論文の概要: Probabilistic smooth attention for deep multiple instance learning in medical imaging
- arxiv url: http://arxiv.org/abs/2507.14932v1
- Date: Sun, 20 Jul 2025 11:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.132756
- Title: Probabilistic smooth attention for deep multiple instance learning in medical imaging
- Title(参考訳): 医用画像の深部多重学習における確率的スムーズな注意
- Authors: Francisco M. Castro-Macías, Pablo Morales-Álvarez, Yunan Wu, Rafael Molina, Aggelos K. Katsaggelos,
- Abstract要約: マルチインスタンスラーニング(MIL)メソッドは、医療画像をインスタンスのバッグとしてキャストし、トレーニングにはバッグラベルのみを必要とする。
深部MILアプローチは、バッグレベルの予測を計算するために、アテンションメカニズムを介してインスタンスレベルの表現を集約することで、有望な結果を得た。
本稿では,注目値上の確率分布を推定する新しい確率的枠組みを提案する。
- 参考スコア(独自算出の注目度): 11.727293641333713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Multiple Instance Learning (MIL) paradigm is attracting plenty of attention in medical imaging classification, where labeled data is scarce. MIL methods cast medical images as bags of instances (e.g. patches in whole slide images, or slices in CT scans), and only bag labels are required for training. Deep MIL approaches have obtained promising results by aggregating instance-level representations via an attention mechanism to compute the bag-level prediction. These methods typically capture both local interactions among adjacent instances and global, long-range dependencies through various mechanisms. However, they treat attention values deterministically, potentially overlooking uncertainty in the contribution of individual instances. In this work we propose a novel probabilistic framework that estimates a probability distribution over the attention values, and accounts for both global and local interactions. In a comprehensive evaluation involving {\color{review} eleven} state-of-the-art baselines and three medical datasets, we show that our approach achieves top predictive performance in different metrics. Moreover, the probabilistic treatment of the attention provides uncertainty maps that are interpretable in terms of illness localization.
- Abstract(参考訳): MIL(Multiple Instance Learning)パラダイムは、ラベル付きデータが不足している医療画像分類において、多くの注目を集めている。
MIL法は、医療画像をインスタンスのバッグ(例えば、スライド画像全体のパッチやCTスキャンのスライス)としてキャストし、トレーニングにはバッグラベルのみが必要となる。
深部MILアプローチは、バッグレベルの予測を計算するために、アテンションメカニズムを介してインスタンスレベルの表現を集約することで、有望な結果を得た。
これらの手法は典型的には、隣接するインスタンス間の局所的な相互作用と、様々なメカニズムを通してグローバルな長距離依存の両方をキャプチャする。
しかし、注意値を決定論的に扱い、個々のインスタンスの寄与の不確実性を見落としている可能性がある。
本研究では,注目値上の確率分布を推定し,グローバルな相互作用とローカルな相互作用の両方を考慮に入れた新しい確率的フレームワークを提案する。
最先端のベースラインと3つの医療データセットを含む包括的評価において,本手法が様々な指標において最高の予測性能を達成することを示す。
さらに、注意の確率的治療は、病気の局所化の観点から解釈可能な不確実性マップを提供する。
関連論文リスト
- Meta-Entity Driven Triplet Mining for Aligning Medical Vision-Language Models [9.76070837929117]
既存のアライメント手法は、微粒な病理属性の分離よりも病気のクラス間の分離を優先する。
本稿では,マルチモーダル三重項学習による画像テキストアライメントを向上させる新しい手法であるMedTrimを提案する。
我々の実証では,MedTrimは,最先端のアライメント手法と比較して,下流検索および分類タスクの性能を向上させることが示されている。
論文 参考訳(メタデータ) (2025-04-22T14:17:51Z) - FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging [68.6715007665896]
FedMedICLは統合されたフレームワークであり、フェデレートされた医療画像の課題を全体評価するためのベンチマークである。
6種類の医用画像データセットについて,いくつかの一般的な手法を総合的に評価した。
単純なバッチ分散手法はFedMedICL実験全体の平均性能において,高度な手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-07-11T19:12:23Z) - Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
観察データから条件平均治療効果(CATE)を推定することは、パーソナライズされた医療など多くの応用に関係している。
ここでは、観測データが複数の環境からやってくる広範囲な環境に焦点を当てる。
任意の機械学習モデルと組み合わせて使用可能な境界を推定するために、異なるモデルに依存しない学習者(いわゆるメタ学習者)を提案する。
論文 参考訳(メタデータ) (2024-06-04T16:31:43Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
本稿では,セグメンテーションマスクの暗黙分布を表現するために,画像誘導型条件付きフローマッチングフレームワークであるFlowSDFを紹介する。
本フレームワークは,セグメンテーションマスクの正確なサンプリングと関連する統計指標の計算を可能にする。
論文 参考訳(メタデータ) (2024-05-28T11:47:12Z) - Rethinking Attention-Based Multiple Instance Learning for Whole-Slide Pathological Image Classification: An Instance Attribute Viewpoint [11.09441191807822]
マルチプル・インスタンス・ラーニング (MIL) は、WSI解析のための堅牢なパラダイムである。
本稿では,これらの問題に対処する属性駆動型MIL(AttriMIL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-30T13:04:46Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Probabilistic Modeling of Inter- and Intra-observer Variability in
Medical Image Segmentation [12.594098548008832]
我々は、確率的オブザーバとiNtraオブザーバ変異NetwOrk(ピオノ)と呼ばれる新しいモデルを提案する。
各レーダのラベル付け動作を多次元確率分布で捉え、確率的セグメンテーション予測を生成する。
実世界のがんセグメンテーションデータセットの実験は、ピオノの精度と効率を実証している。
論文 参考訳(メタデータ) (2023-07-21T07:29:38Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
本稿では,異なるセグメンテーション手法の有効性を評価するために,新しいマルチモーダル評価(MME)手法を提案する。
本稿では, 検出特性, 境界アライメント, 均一性, 総体積, 相対体積など, 関連性, 解釈可能な新しい特徴を紹介する。
提案するアプローチはオープンソースで,使用することができる。
論文 参考訳(メタデータ) (2023-02-08T15:31:33Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。