論文の概要: Are We Overlooking the Dimensions? Learning Latent Hierarchical Channel Structure for High-Dimensional Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2507.15119v1
- Date: Sun, 20 Jul 2025 20:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.204087
- Title: Are We Overlooking the Dimensions? Learning Latent Hierarchical Channel Structure for High-Dimensional Time Series Forecasting
- Title(参考訳): 次元を見落としているか? -高次元時系列予測のための階層的階層構造学習-
- Authors: Juntong Ni, Shiyu Wang, Zewen Liu, Xiaoming Shi, Xinyue Zhong, Zhou Ye, Wei Jin,
- Abstract要約: チャネルに依存した予測アーキテクチャであるU-Castを提案する。
大規模で多様な高次元データセットのベンチマークであるTime-HDもリリースしています。
- 参考スコア(独自算出の注目度): 12.114437867132338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting (TSF) is a central problem in time series analysis. However, as the number of channels in time series datasets scales to the thousands or more, a scenario we define as High-Dimensional Time Series Forecasting (HDTSF), it introduces significant new modeling challenges that are often not the primary focus of traditional TSF research. HDTSF is challenging because the channel correlation often forms complex and hierarchical patterns. Existing TSF models either ignore these interactions or fail to scale as dimensionality grows. To address this issue, we propose U-Cast, a channel-dependent forecasting architecture that learns latent hierarchical channel structures with an innovative query-based attention. To disentangle highly correlated channel representation, U-Cast adds a full-rank regularization during training. We also release Time-HD, a benchmark of large, diverse, high-dimensional datasets. Our theory shows that exploiting cross-channel information lowers forecasting risk, and experiments on Time-HD demonstrate that U-Cast surpasses strong baselines in both accuracy and efficiency. Together, U-Cast and Time-HD provide a solid basis for future HDTSF research.
- Abstract(参考訳): 時系列予測(TSF)は時系列解析における中心的な問題である。
しかし、時系列データセットのチャンネル数が数千を超えると、HDTSF(High-dimensional Time Series Forecasting)と定義されるシナリオが生まれ、従来のTSF研究の焦点ではない重要な新しいモデリング課題がもたらされる。
HDTSFは、チャネル相関が複雑で階層的なパターンを形成することが多いため、難しい。
既存のTSFモデルはこれらの相互作用を無視したり、次元が大きくなるにつれてスケールできなくなる。
この問題に対処するため,チャネル依存型予測アーキテクチャであるU-Castを提案する。
高度に相関したチャネル表現を切り離すために、U-Castはトレーニング中にフルランクの正規化を追加する。
大規模で多様な高次元データセットのベンチマークであるTime-HDもリリースしています。
提案理論は,チャネル間情報を利用すると予測リスクが低下し,U-Castが精度と効率の両面で高いベースラインを超えることを示す。
U-CastとTime-HDは共に、将来のHDTSF研究の確固たる基盤を提供する。
関連論文リスト
- Channel Dependence, Limited Lookback Windows, and the Simplicity of Datasets: How Biased is Time Series Forecasting? [4.995289882402786]
現在の評価シナリオは、現在のデータセットの単純さに大きく偏っていることを示す。
さらに,ルックバックウィンドウが適切に調整された場合,現在のモデルではチャネル間の情報フローが不要であることが強調される。
我々は、CrossformerとTimeMixerのランタイムギャップを埋めるFast Channel-dependent Transformer(FaCT)を提案する。
論文 参考訳(メタデータ) (2025-02-13T13:35:10Z) - TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAFは検索拡張技術によるゼロショット時系列予測を強化する検索拡張予測モデルである。
TimeRAFは、エンド・ツー・エンドの学習可能なレトリバーを使用して、知識ベースから貴重な情報を抽出する。
論文 参考訳(メタデータ) (2024-12-30T09:06:47Z) - DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting [13.05900224897486]
実世界の時系列は、時間とともに分布の変化によって引き起こされる異質な時間パターンを示すことが多い。
チャネル間の相関は複雑で絡み合っており、チャネル間の相互作用を正確にかつ柔軟にモデル化することは困難である。
本稿では,時空間とチャネル次元に2つのクラスタリングを導入するDUETというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-14T15:15:17Z) - Higher-order Cross-structural Embedding Model for Time Series Analysis [12.35149125898563]
時系列分析は、医療、金融、センサーネットワークといった様々な分野における重要な応用のために、注目されている。
現在のアプローチでは、時系列内の高次相互作用をモデル化し、時間的あるいは空間的依存関係を別々に学習することに注力しています。
本稿では,時間的視点と空間的視点の両方を協調的にモデル化する新しいフレームワークであるHigh-TS(Higher-order Cross-structural Embedding Model for Time Series)を提案する。
論文 参考訳(メタデータ) (2024-10-30T12:51:14Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
本稿では,単一入出力プロジェクション層を用いたMoirai-MoEを紹介するとともに,多種多様な時系列パターンのモデリングを専門家の疎結合に委ねる。
39のデータセットに対する大規模な実験は、既存の基盤モデルよりも、分配シナリオとゼロショットシナリオの両方において、Moirai-MoEの優位性を実証している。
論文 参考訳(メタデータ) (2024-10-14T13:01:11Z) - Scalable Transformer for High Dimensional Multivariate Time Series Forecasting [10.17270031004674]
本研究では,高次元MSSデータ上でのチャネル依存モデルの最適性能の背景について検討する。
本稿では,高次元時系列予測のためのスケーラブル変換器STHDを提案する。
実験により、STHDは3つの高次元データセット(クリミア・シカゴ、ウィキ・ピープル、トラヒック)をかなり改善した。
論文 参考訳(メタデータ) (2024-08-08T06:17:13Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraosはカオス理論を長期時系列予測に取り入れている。
本研究では,AttraosがPatchTSTと比較して,パラメータの12分の1しか持たない主流データセットやカオスデータセットにおいて,LTSF法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-18T05:35:01Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
マスク型ユニバーサル時系列予測変換器(モイライ)について述べる。
Moiraiは、新たに導入された大規模オープンタイムシリーズアーカイブ(LOTSA)で訓練されており、9つのドメインで27億以上の観測が行われた。
Moiraiは、フルショットモデルと比較してゼロショットの予測器として、競争力や優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-04T20:00:45Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
ビデオの空間的側面と時間的側面の学習を両立させるDiSTを提案する。
DiSTの非絡み合い学習は、大量の事前学習パラメータのバックプロパゲーションを避けるため、非常に効率的である。
5つのベンチマークの大規模な実験は、DiSTが既存の最先端メソッドよりも優れたパフォーマンスを提供することを示す。
論文 参考訳(メタデータ) (2023-09-14T17:58:33Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
本稿では,CARD(Channel Aligned Robust Blend Transformer)という特殊なトランスを設計する。
まず、CARDはチャネルに沿ったアテンション構造を導入し、信号間の時間的相関をキャプチャする。
第二に、マルチスケール知識を効率的に活用するために、異なる解像度のトークンを生成するトークンブレンドモジュールを設計する。
第3に,潜在的な過度な問題を軽減するため,時系列予測のためのロバストな損失関数を導入する。
論文 参考訳(メタデータ) (2023-05-20T05:16:31Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。