論文の概要: Disentangling Homophily and Heterophily in Multimodal Graph Clustering
- arxiv url: http://arxiv.org/abs/2507.15253v1
- Date: Mon, 21 Jul 2025 05:29:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.265842
- Title: Disentangling Homophily and Heterophily in Multimodal Graph Clustering
- Title(参考訳): マルチモーダルグラフクラスタリングにおけるホモフィリーとヘテロフィリーの相違
- Authors: Zhaochen Guo, Zhixiang Shen, Xuanting Xie, Liangjian Wen, Zhao Kang,
- Abstract要約: マルチモーダルグラフは非構造的異種データと構造的相互接続を統合する。
Disentangled Multimodal Graph Clustering (DMGC)は、ハイブリッドグラフを2つの相補的なビューに分解する。
DMGCは最先端のパフォーマンスを実現し、さまざまな設定におけるその有効性と一般化性を強調している。
- 参考スコア(独自算出の注目度): 7.565710850295745
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal graphs, which integrate unstructured heterogeneous data with structured interconnections, offer substantial real-world utility but remain insufficiently explored in unsupervised learning. In this work, we initiate the study of multimodal graph clustering, aiming to bridge this critical gap. Through empirical analysis, we observe that real-world multimodal graphs often exhibit hybrid neighborhood patterns, combining both homophilic and heterophilic relationships. To address this challenge, we propose a novel framework -- \textsc{Disentangled Multimodal Graph Clustering (DMGC)} -- which decomposes the original hybrid graph into two complementary views: (1) a homophily-enhanced graph that captures cross-modal class consistency, and (2) heterophily-aware graphs that preserve modality-specific inter-class distinctions. We introduce a \emph{Multimodal Dual-frequency Fusion} mechanism that jointly filters these disentangled graphs through a dual-pass strategy, enabling effective multimodal integration while mitigating category confusion. Our self-supervised alignment objectives further guide the learning process without requiring labels. Extensive experiments on both multimodal and multi-relational graph datasets demonstrate that DMGC achieves state-of-the-art performance, highlighting its effectiveness and generalizability across diverse settings. Our code is available at https://github.com/Uncnbb/DMGC.
- Abstract(参考訳): 非構造的異種データと構造的相互接続を統合したマルチモーダルグラフは、実質的な実世界のユーティリティを提供するが、教師なし学習では不十分である。
本研究では,この重要なギャップを埋めるために,マルチモーダルグラフクラスタリングの研究を開始する。
実証分析により、実世界のマルチモーダルグラフは、ホモ親和性とヘテロ親和性の両方を結合して、しばしばハイブリッドな近傍パターンを示すことが観察された。
この課題に対処するために,従来のハイブリッドグラフを2つの相補的なビューに分解する,新しいフレームワーク -- \textsc{Disentangled Multimodal Graph Clustering (DMGC) -- を提案する。
二重パス戦略によりこれらの不整合グラフを共同フィルタリングし、カテゴリー混乱を緩和しながら効果的なマルチモーダル積分を可能にする, 'emph{Multimodal Dual- frequency Fusion} 機構を導入する。
我々の自己監督的アライメントの目的は、ラベルを必要とせずに学習プロセスをさらにガイドすることである。
マルチモーダルグラフデータセットとマルチリレーショナルグラフデータセットの両方に対する大規模な実験は、DMGCが最先端のパフォーマンスを達成し、その有効性と多様な設定における一般化性を強調していることを示している。
私たちのコードはhttps://github.com/Uncnbb/DMGCで利用可能です。
関連論文リスト
- Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering [10.67474681549171]
グラフレベルクラスタリングのためのマルチリレーショナルグラフカーネル強化ネットワーク(MGSN)を提案する。
MGSNは、ノードとグラフ間の多様な意味関係を捉えるために、マルチリレーショナルグラフを構築する。
リレーショナル・アウェアな表現改善戦略を設計し、ビュー間で多関係情報を適応的に整列させる。
論文 参考訳(メタデータ) (2025-04-02T11:17:15Z) - UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs [34.48393396390799]
マルチモーダルグラフ上での汎用的な表現学習を可能にする新しいクロスドメイングラフ基盤モデルを提案する。
UniGraph2は、グラフニューラルネットワーク(GNN)と共にモダリティ固有のエンコーダを使用して、統一された低次元埋め込み空間を学習する。
我々は,UniGraph2が表現学習,伝達学習,マルチモーダル生成タスクなどのタスクにおいて,最先端モデルよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2025-02-02T14:04:53Z) - SiMilarity-Enhanced Homophily for Multi-View Heterophilous Graph Clustering [18.108753344903473]
マルチビューヘテロ親和性グラフクラスタリング(SMHGC)のためのSiMilarity-enhanced Homophilyを提案する。
多視点ヘテロ親和性データセットおよびホモ親和性データセットの最先端実験結果は、教師なし多視点ヘテロ親和性グラフ学習における類似性の強い能力を示す。
論文 参考訳(メタデータ) (2024-10-04T16:55:35Z) - When Heterophily Meets Heterogeneous Graphs: Latent Graphs Guided Unsupervised Representation Learning [6.2167203720326025]
非教師付きヘテロジニアスグラフ表現学習(UHGRL)は,ラベルのない実用的なグラフを扱うことの重要性から注目されている。
我々はセマンティックなヘテロフィリーを定義し、この問題に対処するためにLatGRL(Latent Graphs Guided Unsupervised Representation Learning)と呼ばれる革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-01T10:25:06Z) - M3C: A Framework towards Convergent, Flexible, and Unsupervised Learning
of Mixture Graph Matching and Clustering [57.947071423091415]
本稿では,理論収束を保証する学習自由度アルゴリズムであるM3Cを提案する。
我々は、新しいエッジワイド親和性学習と擬似ラベル選択を組み込んだ教師なしモデルUM3Cを開発した。
提案手法は,最先端のグラフマッチングと混合グラフマッチングとクラスタリングの手法を精度と効率の両面で優れている。
論文 参考訳(メタデータ) (2023-10-27T19:40:34Z) - Multi-modal Multi-kernel Graph Learning for Autism Prediction and Biomarker Discovery [41.90994949022173]
本稿では,マルチモーダル統合の過程におけるモダリティ間の負の影響を相殺し,グラフから異種情報を抽出する手法を提案する。
本手法は,Autism Brain Imaging Data Exchange (ABIDE) データセットを用いて評価し,最先端の手法よりも優れている。
また,自閉症に関連する差別的脳領域を本モデルにより同定し,自閉症の病態研究の指針を提供する。
論文 参考訳(メタデータ) (2023-03-03T07:09:17Z) - Variational Graph Generator for Multi-View Graph Clustering [51.89092260088973]
マルチビューグラフクラスタリング(VGMGC)のための変分グラフ生成器を提案する。
この生成器は、複数のグラフに対する事前仮定に基づいて、信頼性のある変分コンセンサスグラフを推論する。
推論されたビュー共通グラフとビュー固有のグラフを機能と一緒に埋め込む。
論文 参考訳(メタデータ) (2022-10-13T13:19:51Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
グラフ学習は、複数のビューから統一的で堅牢なグラフを学ぶ能力を備えた、マルチビュークラスタリングのための有望なテクニックとして登場した。
本稿では,統合目的関数における多視点一貫性と多視点不整合を同時にモデル化する,新しい多視点グラフ学習フレームワークを提案する。
12のマルチビューデータセットに対する実験は、提案手法の堅牢性と効率性を実証した。
論文 参考訳(メタデータ) (2020-08-24T06:11:29Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
本研究では,複数のビューが一貫した情報を含み,それぞれのビューが相補的な情報を含むマルチビュークラスタリングの問題について検討する。
本稿では、一貫したグラフ正規化マルチビューサブスペースクラスタリング(GRMSC)を含む手法を提案する。
目的関数は多視点クラスタリングを実現するために拡張ラグランジアン乗算法により最適化される。
論文 参考訳(メタデータ) (2020-04-07T03:48:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。