Physics-Informed Learning of Proprietary Inverter Models for Grid Dynamic Studies
- URL: http://arxiv.org/abs/2507.15259v1
- Date: Mon, 21 Jul 2025 05:48:31 GMT
- Title: Physics-Informed Learning of Proprietary Inverter Models for Grid Dynamic Studies
- Authors: Kyung-Bin Kwon, Sayak Mukherjee, Ramij R. Hossain, Marcelo Elizondo,
- Abstract summary: We develop a physics-informed neural ordinary differential equations-based framework to emulate the proprietary dynamics of the inverters.<n>The proposed method is validated using a grid-forming inverter (GFM) case study.
- Score: 0.5999777817331317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter develops a novel physics-informed neural ordinary differential equations-based framework to emulate the proprietary dynamics of the inverters -- essential for improved accuracy in grid dynamic simulations. In current industry practice, the original equipment manufacturers (OEMs) often do not disclose the exact internal controls and parameters of the inverters, posing significant challenges in performing accurate dynamic simulations and other relevant studies, such as gain tunings for stability analysis and controls. To address this, we propose a Physics-Informed Latent Neural ODE Model (PI-LNM) that integrates system physics with neural learning layers to capture the unmodeled behaviors of proprietary units. The proposed method is validated using a grid-forming inverter (GFM) case study, demonstrating improved dynamic simulation accuracy over approaches that rely solely on data-driven learning without physics-based guidance.
Related papers
- Neural ODE Transformers: Analyzing Internal Dynamics and Adaptive Fine-tuning [30.781578037476347]
We introduce a novel approach to modeling transformer architectures using highly flexible non-autonomous neural ordinary differential equations (ODEs)<n>Our proposed model parameterizes all weights of attention and feed-forward blocks through neural networks, expressing these weights as functions of a continuous layer index.<n>Our neural ODE transformer demonstrates performance comparable to or better than vanilla transformers across various configurations and datasets.
arXiv Detail & Related papers (2025-03-03T09:12:14Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections.
We also propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images.
arXiv Detail & Related papers (2024-10-10T17:43:36Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
We propose a novel machine learning architecture, termed model-integrated neural networks (MINN)<n>MINN learns the physics-based dynamics of general autonomous or non-autonomous systems consisting of partial differential-algebraic equations (PDAEs)<n>We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Neural ODE and DAE Modules for Power System Dynamic Modeling [2.342020413587919]
In practical power systems, dynamic component modeling has long faced the challenges of model determination and model calibration.
In this paper, based on the general framework of neural ordinary differential equations (ODEs), a modified neural ODE module and a neural differential-algebraic equations (DAEs) module for power system dynamic component modeling are proposed.
The modules adopt an autoencoder to raise the dimension of state variables, model the dynamics of components with artificial neural networks (ANNs) and keep the numerical integration structure.
arXiv Detail & Related papers (2021-10-25T14:15:45Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.