論文の概要: Butterfly Effects in Toolchains: A Comprehensive Analysis of Failed Parameter Filling in LLM Tool-Agent Systems
- arxiv url: http://arxiv.org/abs/2507.15296v1
- Date: Mon, 21 Jul 2025 06:55:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.29313
- Title: Butterfly Effects in Toolchains: A Comprehensive Analysis of Failed Parameter Filling in LLM Tool-Agent Systems
- Title(参考訳): ツールチェーンにおける蝶効果: LLMツールエージェントシステムにおける欠陥パラメータの包括的解析
- Authors: Qian Xiong, Yuekai Huang, Ziyou Jiang, Zhiyuan Chang, Yujia Zheng, Tianhao Li, Mingyang Li,
- Abstract要約: ツールエージェントパラダイムの出現は、Large Language Model(LLM)の機能境界を広げた。
このパラダイムの有効性は、実行中のパラメータ失敗の問題によって制限される。
- 参考スコア(独自算出の注目度): 13.638906690667831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of the tool agent paradigm has broadened the capability boundaries of the Large Language Model (LLM), enabling it to complete more complex tasks. However, the effectiveness of this paradigm is limited due to the issue of parameter failure during its execution. To explore this phenomenon and propose corresponding suggestions, we first construct a parameter failure taxonomy in this paper. We derive five failure categories from the invocation chain of a mainstream tool agent. Then, we explore the correlation between three different input sources and failure categories by applying 15 input perturbation methods to the input. Experimental results show that parameter name hallucination failure primarily stems from inherent LLM limitations, while issues with input sources mainly cause other failure patterns. To improve the reliability and effectiveness of tool-agent interactions, we propose corresponding improvement suggestions, including standardizing tool return formats, improving error feedback mechanisms, and ensuring parameter consistency.
- Abstract(参考訳): ツールエージェントパラダイムの出現により、LLM(Large Language Model)の機能境界が拡大され、より複雑なタスクを完了できるようになった。
しかし、このパラダイムの有効性は、実行中のパラメータ失敗の問題により制限されている。
本稿では,この現象を探求し,それに対応する提案を行うために,まずパラメータ故障分類法を構築する。
メインストリームのツールエージェントの呼び出しチェーンから,5つの障害カテゴリを導出します。
そして,入力に15個の入力摂動法を適用することにより,3つの入力源と障害カテゴリの相関性を検討する。
実験結果から,パラメータ名の幻覚障害は主に固有のLDM制限に起因するが,入力源の問題は他の障害パターンの原因となることがわかった。
ツールエージェント間のインタラクションの信頼性と有効性を改善するため,ツールリターンフォーマットの標準化,エラーフィードバック機構の改善,パラメータの整合性の確保などの改善提案を提案する。
関連論文リスト
- Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios [54.58186816693791]
環境は時間と空間によって常に変化し、クローズドセットの仮定に基づいて訓練された物体検出器にとって重要な課題となる。
そこで本研究では,微調整過程をパラメータ生成に変換する機構を提案する。
特に,2経路LoRAベースのドメイン認識アダプタを最初に設計し,特徴をドメイン不変およびドメイン固有コンポーネントに分解する。
論文 参考訳(メタデータ) (2025-06-30T17:14:12Z) - Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion [52.315729095824906]
MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD) は,マルチモーダル大言語モデル(MLLM)を推論中の意味的オブザーバとして導入する新しいフレームワークである。
中間世代をリアルタイムに分析し、潜在意味的不整合を識別し、フィードバックを制御可能な信号に変換し、残りの認知ステップを積極的に導く。
大規模な実験ではPPADの大幅な改善が示されている。
論文 参考訳(メタデータ) (2025-05-26T14:42:35Z) - Leveraging LLM Inconsistency to Boost Pass@k Performance [3.797421474324735]
大規模言語モデル(LLM)は、多くのドメインにおいて印象的な能力を発揮するが、マイナーな入力変更に対する不整合性を示す。
本稿では,Pass@kの性能向上にモデルの不整合を利用した新しい手法を提案する。
具体的には、与えられたタスクのk変種を生成し、各タスクに対して1つの候補解を提出する「変数」エージェントを提案する。
論文 参考訳(メタデータ) (2025-05-19T10:22:04Z) - The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
大規模計算モデル(LAIM)サービスの需要は、従来のクラウドベースの推論から、低レイテンシでプライバシ保護のアプリケーションのためのエッジベースの推論へのパラダイムシフトを推進している。
本稿では,事前学習したLAIMをデバイス上のサブモデルとサーバ上のサブモデルに分割して配置するLAIM推論方式について検討する。
論文 参考訳(メタデータ) (2025-05-14T08:18:55Z) - Sensitivity Meets Sparsity: The Impact of Extremely Sparse Parameter Patterns on Theory-of-Mind of Large Language Models [55.46269953415811]
ToM感受性パラメータを同定し、これらのパラメータの0.001%の摂動がToM性能を著しく低下させることを示す。
我々の結果は、モデルアライメントの強化、バイアス軽減、ヒューマンインタラクション用に設計されたAIシステムの改善に影響を及ぼす。
論文 参考訳(メタデータ) (2025-04-05T17:45:42Z) - A Unified Virtual Mixture-of-Experts Framework:Enhanced Inference and Hallucination Mitigation in Single-Model System [9.764336669208394]
GPTやBERTのような生成モデルは、テキスト生成や要約といったタスクのパフォーマンスを大幅に改善した。
しかし、「モデルが非現実的または誤解を招くコンテンツを生成する場所」という幻覚は、特に小規模アーキテクチャでは問題となる。
本稿では,単一のQwen 1.5 0.5Bモデルにおいて,推論性能を高め,幻覚を緩和する仮想ミックス・オブ・エクササイズ(MoE)融合戦略を提案する。
論文 参考訳(メタデータ) (2025-04-01T11:38:01Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
我々は,外部ツール利用のための適応型意思決定戦略であるMeCoを提案する。
MeCoは、表現空間内の高レベル認知信号をキャプチャすることで、メタ認知スコアを定量化する。
MeCoは微調整不要で、最小限のコストがかかる。
論文 参考訳(メタデータ) (2025-02-18T15:45:01Z) - Optimal Brain Iterative Merging: Mitigating Interference in LLM Merging [11.708743111945727]
大きな言語モデル(LLM)は印象的な能力を示しているが、その高い計算コストはカスタマイズに困難をもたらす。
モデルマージはコスト効率の良い代替手段を提供するが、既存のメソッドはパラメータ間の干渉に悩まされ、パフォーマンスが低下する。
本稿では,モデル内干渉とモデル間干渉を緩和する新しい手法である,最適脳反復法を提案する。
論文 参考訳(メタデータ) (2025-02-17T09:07:49Z) - Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems [2.7212274374272543]
連立条件拡散モデルに基づく逆問題解法(JCDI)を開発した。
JCDIは、パラメータの一般化性を改善するために、マルチイベント観測を同時に入力するジョイントコンディショニングアーキテクチャを組み込んでいる。
WECC CLMのシミュレーション研究により、提案したJCDIは縮退パラメータの不確かさを効果的に低減することを示した。
論文 参考訳(メタデータ) (2024-11-15T18:53:08Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
本稿では,外部観測から推論プロセスを取り除き,トークン消費量を大幅に削減するモジュラーパラダイムReWOOを提案する。
マルチステップ推論ベンチマークであるHotpotQAにおいて,ReWOOは5倍のトークン効率と4%の精度向上を実現している。
本稿では,175B GPT3.5から7B LLaMAへの推論能力をオフロードし,真に効率的でスケーラブルなALMシステムの可能性を示す。
論文 参考訳(メタデータ) (2023-05-23T00:16:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。