Butterfly Effects in Toolchains: A Comprehensive Analysis of Failed Parameter Filling in LLM Tool-Agent Systems
- URL: http://arxiv.org/abs/2507.15296v1
- Date: Mon, 21 Jul 2025 06:55:37 GMT
- Title: Butterfly Effects in Toolchains: A Comprehensive Analysis of Failed Parameter Filling in LLM Tool-Agent Systems
- Authors: Qian Xiong, Yuekai Huang, Ziyou Jiang, Zhiyuan Chang, Yujia Zheng, Tianhao Li, Mingyang Li,
- Abstract summary: The emergence of the tool agent paradigm has broadened the capability boundaries of the Large Language Model (LLM)<n>The effectiveness of this paradigm is limited due to the issue of parameter failure during its execution.
- Score: 13.638906690667831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of the tool agent paradigm has broadened the capability boundaries of the Large Language Model (LLM), enabling it to complete more complex tasks. However, the effectiveness of this paradigm is limited due to the issue of parameter failure during its execution. To explore this phenomenon and propose corresponding suggestions, we first construct a parameter failure taxonomy in this paper. We derive five failure categories from the invocation chain of a mainstream tool agent. Then, we explore the correlation between three different input sources and failure categories by applying 15 input perturbation methods to the input. Experimental results show that parameter name hallucination failure primarily stems from inherent LLM limitations, while issues with input sources mainly cause other failure patterns. To improve the reliability and effectiveness of tool-agent interactions, we propose corresponding improvement suggestions, including standardizing tool return formats, improving error feedback mechanisms, and ensuring parameter consistency.
Related papers
- Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios [54.58186816693791]
environments constantly change over time and space, posing significant challenges for object detectors trained based on a closed-set assumption.<n>We propose a new mechanism, converting the fine-tuning process to a specific- parameter generation.<n>In particular, we first design a dual-path LoRA-based domain-aware adapter that disentangles features into domain-invariant and domain-specific components.
arXiv Detail & Related papers (2025-06-30T17:14:12Z) - Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion [52.315729095824906]
MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD) is a novel framework that introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference.<n>It performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps.<n>Extensive experiments demonstrate PPAD's significant improvements.
arXiv Detail & Related papers (2025-05-26T14:42:35Z) - Leveraging LLM Inconsistency to Boost Pass@k Performance [3.797421474324735]
Large language models (LLMs) achieve impressive abilities in numerous domains, but exhibit inconsistent performance in response to minor input changes.<n>We introduce a novel method for leveraging models' inconsistency to boost Pass@k performance.<n>Specifically, we present a "Variator" agent that generates k variants of a given task and submits one candidate solution for each one.
arXiv Detail & Related papers (2025-05-19T10:22:04Z) - The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
arXiv Detail & Related papers (2025-05-14T08:18:55Z) - Sensitivity Meets Sparsity: The Impact of Extremely Sparse Parameter Patterns on Theory-of-Mind of Large Language Models [55.46269953415811]
We identify ToM-sensitive parameters and show that perturbing as little as 0.001% of these parameters significantly degrades ToM performance.<n>Our results have implications for enhancing model alignment, mitigating biases, and improving AI systems designed for human interaction.
arXiv Detail & Related papers (2025-04-05T17:45:42Z) - A Unified Virtual Mixture-of-Experts Framework:Enhanced Inference and Hallucination Mitigation in Single-Model System [9.764336669208394]
Generative models, such as GPT and BERT, have significantly improved performance in tasks like text generation and summarization.<n>However, hallucinations "where models generate non-factual or misleading content" are especially problematic in smaller-scale architectures.<n>We propose a unified Virtual Mixture-of-Experts (MoE) fusion strategy that enhances inference performance and mitigates hallucinations in a single Qwen 1.5 0.5B model.
arXiv Detail & Related papers (2025-04-01T11:38:01Z) - Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.<n>MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space.<n>MeCo is fine-tuning-free and incurs minimal cost.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - Optimal Brain Iterative Merging: Mitigating Interference in LLM Merging [11.708743111945727]
Large Language Models (LLMs) have demonstrated impressive capabilities, but their high computational costs pose challenges for customization.<n>Model merging offers a cost-effective alternative, yet existing methods suffer from interference among parameters, leading to performance degradation.<n>We propose Optimal Brain Iterative Merging, a novel method designed to mitigate both intra-model and inter-model interference.
arXiv Detail & Related papers (2025-02-17T09:07:49Z) - Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems [2.7212274374272543]
We develop a joint conditional diffusion model-based inverse problem solver (JCDI)
JCDI incorporates a joint conditioning architecture with simultaneous inputs of multi-event observations to improve parameter generalizability.
Simulation studies on the WECC CLM show that the proposed JCDI effectively reduces uncertainties of degenerate parameters.
arXiv Detail & Related papers (2024-11-15T18:53:08Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
We propose a modular paradigm ReWOO that detaches the reasoning process from external observations, thus significantly reducing token consumption.
We show that ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark.
Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
arXiv Detail & Related papers (2023-05-23T00:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.