論文の概要: MedSR-Impact: Transformer-Based Super-Resolution for Lung CT Segmentation, Radiomics, Classification, and Prognosis
- arxiv url: http://arxiv.org/abs/2507.15340v1
- Date: Mon, 21 Jul 2025 07:53:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.306895
- Title: MedSR-Impact: Transformer-Based Super-Resolution for Lung CT Segmentation, Radiomics, Classification, and Prognosis
- Title(参考訳): MedSR-Impact: Transformer-based Super-Resolution for Lung CT Segmentation, Radiomics, Classification, and Prognosis
- Authors: Marc Boubnovski Martell, Kristofer Linton-Reid, Mitchell Chen, Sumeet Hindocha, Benjamin Hunter, Marco A. Calzado, Richard Lee, Joram M. Posma, Eric O. Aboagye,
- Abstract要約: 高分解能CTは胸部疾患の正確な診断と治療計画に不可欠である。
臨床的肺CT解析のためのトランスフォーマーベース超解像フレームワークである Transformer Volumetric Super-Resolution Network (textbfTVSRN-V2) を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-resolution volumetric computed tomography (CT) is essential for accurate diagnosis and treatment planning in thoracic diseases; however, it is limited by radiation dose and hardware costs. We present the Transformer Volumetric Super-Resolution Network (\textbf{TVSRN-V2}), a transformer-based super-resolution (SR) framework designed for practical deployment in clinical lung CT analysis. Built from scalable components, including Through-Plane Attention Blocks (TAB) and Swin Transformer V2 -- our model effectively reconstructs fine anatomical details in low-dose CT volumes and integrates seamlessly with downstream analysis pipelines. We evaluate its effectiveness on three critical lung cancer tasks -- lobe segmentation, radiomics, and prognosis -- across multiple clinical cohorts. To enhance robustness across variable acquisition protocols, we introduce pseudo-low-resolution augmentation, simulating scanner diversity without requiring private data. TVSRN-V2 demonstrates a significant improvement in segmentation accuracy (+4\% Dice), higher radiomic feature reproducibility, and enhanced predictive performance (+0.06 C-index and AUC). These results indicate that SR-driven recovery of structural detail significantly enhances clinical decision support, positioning TVSRN-V2 as a well-engineered, clinically viable system for dose-efficient imaging and quantitative analysis in real-world CT workflows.
- Abstract(参考訳): 高分解能CTは胸部疾患の正確な診断・治療計画に不可欠であるが,放射線線量とハードウェアコストに制限される。
臨床的肺CT解析における実用的展開を目的としたトランスフォーマーベース超解像(SR)フレームワークであるTransformer Volumetric Super-Resolution Network (\textbf{TVSRN-V2})を提案する。
Through-Plane Attention Blocks (TAB) や Swin Transformer V2 など,スケーラブルなコンポーネントから構築された当社のモデルは,低用量CTボリュームの解剖学的詳細を効率的に再構築し,下流分析パイプラインとシームレスに統合します。
複数の臨床コホートにまたがる3つの重要な肺がんタスク(葉分画、放射線治療、予後)において,その効果を評価した。
可変取得プロトコル間のロバスト性を高めるため、擬似低解像度拡張を導入し、プライベートデータを必要とせずにスキャナの多様性をシミュレーションする。
TVSRN-V2は、セグメンテーション精度(+4\% Dice)、高放射能特性再現性、予測性能(+0.06 C-indexとAUC)を著しく改善した。
これらの結果から, SRによる構造的詳細の回復は臨床的決定支援を著しく向上させ, 実世界のCTワークフローにおける線量効率画像および定量的解析のための, 十分に設計された, 臨床的に実行可能なシステムとしてTVSRN-V2を位置づけることが示唆された。
関連論文リスト
- GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
本稿では,2次元ガウススプラッティングとTransformer UNetアーキテクチャを組み合わせた皮膚癌自動診断手法を提案する。
セグメンテーションと分類の精度は著しく向上した。
この統合は、新しいベンチマークをこの分野に設定し、マルチタスク医療画像解析手法のさらなる研究の可能性を強調している。
論文 参考訳(メタデータ) (2025-02-23T23:28:47Z) - Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework [16.98886836566185]
クラスタベースサブサンプリング(CSS)法は,CTスライスをコンパクトかつ包括的に選択する。
ハイブリッド不確実性定量化(HUQ)メカニズムは、Aleatoric Uncertainty(AU)とEpistemic Uncertainty(EU)の両方を最小の計算オーバーヘッドで評価する。
論文 参考訳(メタデータ) (2024-12-02T14:18:17Z) - Lung Disease Detection with Vision Transformers: A Comparative Study of Machine Learning Methods [0.0]
本研究では,機械学習における最先端アーキテクチャであるビジョントランスフォーマー(ViT)の胸部X線解析への応用について検討する。
胸部X線像と肺分画領域に焦点を当てた2つのViT法の比較検討を行った。
論文 参考訳(メタデータ) (2024-11-18T08:40:25Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) は、異常に不適切なCT再構成逆問題に対処するために設計された、教師なしのフレームワークである。
DPERは、半二次分割法(HQS)アルゴリズムを採用し、逆問題からデータ忠実度とサブプロブレム前の分布に分解する。
LACTにおけるDPERの性能評価と2つの公開データセットを用いた超SVCT再構成に関する総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-27T12:55:13Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Attention Augmented ConvNeXt UNet For Rectal Tumour Segmentation [5.203079341228683]
深層学習を通して直腸癌腫瘍の位置と大きさを分類することは困難である。
本稿では,注意を拡大したConvNeXt UNet(AACN-UNet)を提案する。
UNetとその変種ネットワークによる実験によると、AACN-UNetはP、F1、Miouの最高値よりも0.9%、1.1%、そして1.4%高い。
論文 参考訳(メタデータ) (2022-10-01T09:08:43Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - RPLHR-CT Dataset and Transformer Baseline for Volumetric
Super-Resolution from CT Scans [12.066026343488453]
粗い解像度は、医師またはコンピュータ支援診断アルゴリズムによる医学的診断の困難を引き起こす可能性がある。
深層学習に基づく容積超解法(SR法)は、解法を改善するための実現可能な方法である。
本稿では,RPLHR-CTをボリュームSRのベンチマークとして構築した。
また,CNNの固有の欠点を考慮し,アテンション機構に基づくトランスフォーマーボリューム超解像ネットワーク(TVSRN)を提案する。
論文 参考訳(メタデータ) (2022-06-13T15:35:59Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
CTによる肺結節の早期発見は,肺癌患者の長期生存と生活の質の向上に不可欠である。
CAD (Computer-Aided Detection/diagnosis) はこの文脈において第2または同時読影器として有用である。
肺結節の正確な検出は、サイズ、位置、および肺結節の出現のばらつきにより、CADシステムや放射線技師にとって依然として困難である。
近年のコンピュータビジョン技術に触発されて,肺結節を同定するための自己教師付き領域ベース3次元トランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-04-30T01:19:00Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Generative Models Improve Radiomics Performance in Different Tasks and
Different Datasets: An Experimental Study [3.040206021972938]
ラジオミクス(Radiomics)は、医用画像からの高スループット特徴抽出に焦点を当てた研究分野である。
生成モデルは、異なるタスクにおける低線量CTベースの放射能の性能を改善することができる。
論文 参考訳(メタデータ) (2021-09-06T06:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。