Hierarchical Graph Information Bottleneck for Multi-Behavior Recommendation
- URL: http://arxiv.org/abs/2507.15395v1
- Date: Mon, 21 Jul 2025 08:53:49 GMT
- Title: Hierarchical Graph Information Bottleneck for Multi-Behavior Recommendation
- Authors: Hengyu Zhang, Chunxu Shen, Xiangguo Sun, Jie Tan, Yanchao Tan, Yu Rong, Hong Cheng, Lingling Yi,
- Abstract summary: We propose a novel model-agnostic Hierarchical Graph Information Bottleneck (HGIB) framework for multi-behavior recommendation.<n>Our framework optimize the learning of compact yet sufficient representations that preserve essential information for target behavior prediction.<n>We conduct comprehensive experiments on three real-world public datasets, which demonstrate the superior effectiveness of our framework.
- Score: 31.495904374599533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world recommendation scenarios, users typically engage with platforms through multiple types of behavioral interactions. Multi-behavior recommendation algorithms aim to leverage various auxiliary user behaviors to enhance prediction for target behaviors of primary interest (e.g., buy), thereby overcoming performance limitations caused by data sparsity in target behavior records. Current state-of-the-art approaches typically employ hierarchical design following either cascading (e.g., view$\rightarrow$cart$\rightarrow$buy) or parallel (unified$\rightarrow$behavior$\rightarrow$specific components) paradigms, to capture behavioral relationships. However, these methods still face two critical challenges: (1) severe distribution disparities across behaviors, and (2) negative transfer effects caused by noise in auxiliary behaviors. In this paper, we propose a novel model-agnostic Hierarchical Graph Information Bottleneck (HGIB) framework for multi-behavior recommendation to effectively address these challenges. Following information bottleneck principles, our framework optimizes the learning of compact yet sufficient representations that preserve essential information for target behavior prediction while eliminating task-irrelevant redundancies. To further mitigate interaction noise, we introduce a Graph Refinement Encoder (GRE) that dynamically prunes redundant edges through learnable edge dropout mechanisms. We conduct comprehensive experiments on three real-world public datasets, which demonstrate the superior effectiveness of our framework. Beyond these widely used datasets in the academic community, we further expand our evaluation on several real industrial scenarios and conduct an online A/B testing, showing again a significant improvement in multi-behavior recommendations. The source code of our proposed HGIB is available at https://github.com/zhy99426/HGIB.
Related papers
- Combinatorial Optimization Perspective based Framework for Multi-behavior Recommendation [23.26102452699347]
We propose a novel multi-behavior recommendation framework based on the optimization perspective, named COPF.<n>In the prediction step, we improve both forward and backward propagation during the generation and aggregation of multiple experts.<n>Experiments on three real-world datasets indicate the superiority of COPF.
arXiv Detail & Related papers (2025-02-04T11:19:47Z) - HEC-GCN: Hypergraph Enhanced Cascading Graph Convolution Network for Multi-Behavior Recommendation [41.65320959602054]
We propose a novel approach named Hypergraph Enhanced Cascading Graph Convolution Network for multi-behavior recommendation (HEC-GCN)<n>To be specific, we first explore both fine- and coarse-grained correlations among users or items of each behavior by simultaneously modeling the behavior-specific interaction graph and its corresponding hypergraph in a cascaded manner.
arXiv Detail & Related papers (2024-12-19T02:57:02Z) - Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.<n>A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.<n>We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - Bidirectional Decoding: Improving Action Chunking via Guided Test-Time Sampling [51.38330727868982]
We show how action chunking impacts the divergence between a learner and a demonstrator.<n>We propose Bidirectional Decoding (BID), a test-time inference algorithm that bridges action chunking with closed-loop adaptation.<n>Our method boosts the performance of two state-of-the-art generative policies across seven simulation benchmarks and two real-world tasks.
arXiv Detail & Related papers (2024-08-30T15:39:34Z) - Behavior Pattern Mining-based Multi-Behavior Recommendation [22.514959709811446]
We introduce Behavior Pattern mining-based Multi-behavior Recommendation (BPMR)
BPMR extensively investigates the diverse interaction patterns between users and items, utilizing these patterns as features for making recommendations.
Our experimental evaluation on three real-world datasets demonstrates that BPMR significantly outperforms existing state-of-the-art algorithms.
arXiv Detail & Related papers (2024-08-22T06:41:59Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Impression-Informed Multi-Behavior Recommender System: A Hierarchical
Graph Attention Approach [4.03161352925235]
We introduce textbfHierarchical textbfMulti-behavior textbfGraph Attention textbfNetwork (HMGN)
This pioneering framework leverages attention mechanisms to discern information from both inter and intra-behaviors.
We register a notable performance boost of up to 64% in NDCG@100 metrics over conventional graph neural network methods.
arXiv Detail & Related papers (2023-09-06T17:09:43Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.