Solving nonconvex Hamilton--Jacobi--Isaacs equations with PINN-based policy iteration
- URL: http://arxiv.org/abs/2507.15455v2
- Date: Wed, 23 Jul 2025 10:44:15 GMT
- Title: Solving nonconvex Hamilton--Jacobi--Isaacs equations with PINN-based policy iteration
- Authors: Hee Jun Yang, Minjung Gim, Yeoneung Kim,
- Abstract summary: We present a framework that combines classical dynamic programming with neural networks (PINNs) to solve non-subscriber Hamilton-Jacobi-Isaac equations.<n>Our results suggest that integrating PINNs with policy policy is a practical and theoretically grounded method for solving high-dimensional, nonsubscriber HJI equations.
- Score: 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a mesh-free policy iteration framework that combines classical dynamic programming with physics-informed neural networks (PINNs) to solve high-dimensional, nonconvex Hamilton--Jacobi--Isaacs (HJI) equations arising in stochastic differential games and robust control. The method alternates between solving linear second-order PDEs under fixed feedback policies and updating the controls via pointwise minimax optimization using automatic differentiation. Under standard Lipschitz and uniform ellipticity assumptions, we prove that the value function iterates converge locally uniformly to the unique viscosity solution of the HJI equation. The analysis establishes equi-Lipschitz regularity of the iterates, enabling provable stability and convergence without requiring convexity of the Hamiltonian. Numerical experiments demonstrate the accuracy and scalability of the method. In a two-dimensional stochastic path-planning game with a moving obstacle, our method matches finite-difference benchmarks with relative $L^2$-errors below %10^{-2}%. In five- and ten-dimensional publisher-subscriber differential games with anisotropic noise, the proposed approach consistently outperforms direct PINN solvers, yielding smoother value functions and lower residuals. Our results suggest that integrating PINNs with policy iteration is a practical and theoretically grounded method for solving high-dimensional, nonconvex HJI equations, with potential applications in robotics, finance, and multi-agent reinforcement learning.
Related papers
- Neural Policy Iteration for Stochastic Optimal Control: A Physics-Informed Approach [2.8988658640181826]
We propose a physics-informed neural network policy iteration framework (PINN-PI)<n>At each iteration, a neural network is trained to approximate the value function by minimizing the residual of a linear PDE induced by a fixed policy.<n>We demonstrate the effectiveness of our method on several benchmark problems, including gradient cartpole, pendulum high-dimensional linear quadratic regulation (LQR) problems in up to 10D.
arXiv Detail & Related papers (2025-08-03T11:02:25Z) - Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
In this work, we present an original algorithm to coarsen an unstructured grid based on the concepts of differentiable physics.<n>We demonstrate performance of the algorithm on two PDEs: a linear equation which governs slightly compressible fluid flow in porous media and the wave equation.<n>Our results show that in the considered scenarios, we reduced the number of grid points up to 10 times while preserving the modeled variable dynamics in the points of interest.
arXiv Detail & Related papers (2025-07-24T11:02:13Z) - A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
We propose a scalable preconditioned primal hybrid gradient algorithm for solving partial differential equations (PDEs)<n>We compare the performance of the proposed method with several commonly used deep learning algorithms.<n>The numerical results suggest that the proposed method performs efficiently and robustly and converges more stably.
arXiv Detail & Related papers (2024-11-09T20:39:10Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.<n>This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.<n>We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
We propose a novel optimization framework for the hyperspectral deconvolution problem, called DeepMix.<n>It consists of three distinct modules, namely, a data consistency module, a module that enforces the effect of the handcrafted regularizers, and a denoising module.<n>This work proposes a context aware denoising module designed to sustain the advancements achieved by the cooperative efforts of the other modules.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control [27.38625075499457]
We present a scalable deep learning approach to solve opinion dynamics optimal control problems with mean field term coupling in the dynamics and cost function.
The proposed framework opens up the possibility for future applications on extremely large-scale problems.
arXiv Detail & Related papers (2022-04-05T22:07:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.