論文の概要: SurfaceSplat: Connecting Surface Reconstruction and Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2507.15602v2
- Date: Mon, 28 Jul 2025 06:27:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 14:15:47.045434
- Title: SurfaceSplat: Connecting Surface Reconstruction and Gaussian Splatting
- Title(参考訳): SurfaceSplat: 表面再構成とガウススプラッティングをつなぐ
- Authors: Zihui Gao, Jia-Wang Bian, Guosheng Lin, Hao Chen, Chunhua Shen,
- Abstract要約: スパースビュー画像による表面再構成と新しいビューレンダリングは困難である。
両手法の強みを組み合わせた新しいハイブリッド手法を提案する。
提案手法はDTUおよびMobileBrickデータセット上でのサーフェス再構成と新しいビュー合成における最先端のアプローチを超越した手法である。
- 参考スコア(独自算出の注目度): 92.13737830605902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surface reconstruction and novel view rendering from sparse-view images are challenging. Signed Distance Function (SDF)-based methods struggle with fine details, while 3D Gaussian Splatting (3DGS)-based approaches lack global geometry coherence. We propose a novel hybrid method that combines the strengths of both approaches: SDF captures coarse geometry to enhance 3DGS-based rendering, while newly rendered images from 3DGS refine the details of SDF for accurate surface reconstruction. As a result, our method surpasses state-of-the-art approaches in surface reconstruction and novel view synthesis on the DTU and MobileBrick datasets. Code will be released at https://github.com/aim-uofa/SurfaceSplat.
- Abstract(参考訳): スパースビュー画像による表面再構成と新しいビューレンダリングは困難である。
符号付き距離関数 (SDF) に基づく手法は細部で苦労するが、3次元ガウススプラッティング (3DGS) に基づく手法はグローバルな幾何学的コヒーレンスを欠いている。
SDFは3DGSに基づくレンダリングを強化するために粗い形状をキャプチャし、3DGSから新たにレンダリングされた画像はSDFの細部を精細化し、正確な表面再構成を行う。
その結果,本手法はDTUおよびMobileBrickデータセット上でのサーフェス再構成と新しいビュー合成において,最先端のアプローチを超越している。
コードはhttps://github.com/aim-uofa/SurfaceSplat.comでリリースされる。
関連論文リスト
- GS-2DGS: Geometrically Supervised 2DGS for Reflective Object Reconstruction [51.99776072246151]
2次元ガウス散乱(2DGS)に基づく反射物体に対するGS-2DGSと呼ばれる新しい再構成法を提案する。
合成および実データを用いた実験結果から,本手法はガウスの手法を再現・啓蒙の面で著しく上回っていることが示された。
論文 参考訳(メタデータ) (2025-06-16T05:40:16Z) - CoSurfGS:Collaborative 3D Surface Gaussian Splatting with Distributed Learning for Large Scene Reconstruction [68.81212850946318]
大規模表面再構成のための分散学習に基づく多エージェント協調高速3DGS表面再構成フレームワークを提案する。
具体的には,局所モデル圧縮(LMC)とモデルアグリゲーションスキーム(MAS)を開発し,大規模シーンの高品質な表面表現を実現する。
提案手法は高速でスケーラブルな高忠実表面再構成とフォトリアリスティックレンダリングを実現する。
論文 参考訳(メタデータ) (2024-12-23T14:31:15Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
高品質な再構成のための神経信号距離場(SDF)とプリミティブを結合する新しい手法であるMonoGSDFを紹介する。
任意のスケールのシーンを扱うために,ロバストな一般化のためのスケーリング戦略を提案する。
実世界のデータセットの実験は、効率を保ちながら、以前の方法よりも優れています。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - GSurf: 3D Reconstruction via Signed Distance Fields with Direct Gaussian Supervision [3.2944910942497985]
マルチビュー画像からの表面再構成は3次元視覚における中核的な課題である。
近年, ニューラル・レージアンス・フィールド(NeRF)内のサイン付き距離場(SDF)を探索し, 高忠実な表面再構成を実現している。
本稿では,ガウス原始体から直接符号付き距離場を学習する新しいエンドツーエンド手法であるGSurfを紹介する。
GSurfは、VolSDFやNeuSといったニューラルな暗黙的表面法に匹敵する3D再構成品質を提供しながら、高速なトレーニングとレンダリングの速度を達成する。
論文 参考訳(メタデータ) (2024-11-24T05:55:19Z) - 3D Gaussian Splatting for Large-scale Surface Reconstruction from Aerial Images [6.076999957937232]
AGS(Aerial Gaussian Splatting)という,空中多視点ステレオ(MVS)画像を用いた3DGSによる大規模表面再構成手法を提案する。
まず,大規模空中画像に適したデータチャンキング手法を提案する。
次に,レイ・ガウス断面積法を3DGSに統合し,深度情報と正規情報を得る。
論文 参考訳(メタデータ) (2024-08-31T08:17:24Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface [7.052369521411523]
SplatFaceは3次元人間の顔再構成のための新しいガウススプレイティングフレームワークであり、正確な事前決定幾何に依存しない。
本手法は,高品質な新規ビューレンダリングと高精度な3Dメッシュ再構成の両方を同時に実現するように設計されている。
論文 参考訳(メタデータ) (2024-03-27T17:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。