論文の概要: Dynamics is what you need for time-series forecasting!
- arxiv url: http://arxiv.org/abs/2507.15774v1
- Date: Mon, 21 Jul 2025 16:29:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.483387
- Title: Dynamics is what you need for time-series forecasting!
- Title(参考訳): ダイナミクスは時系列予測に必要なものです!
- Authors: Alexis-Raja Brachet, Pierre-Yves Richard, Céline Hudelot,
- Abstract要約: 我々は,既存のモデルを動的レンズで解析するために,オリジナルの$textttPRO-DYN$nomenclatureを開発した。
様々なバックボーンを持つ一連の性能変化モデルの観測を確認するために、広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 6.775534755081169
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While boundaries between data modalities are vanishing, the usual successful deep models are still challenged by simple ones in the time-series forecasting task. Our hypothesis is that this task needs models that are able to learn the data underlying dynamics. We propose to validate it through both systemic and empirical studies. We develop an original $\texttt{PRO-DYN}$ nomenclature to analyze existing models through the lens of dynamics. Two observations thus emerged: $\textbf{1}$. under-performing architectures learn dynamics at most partially, $\textbf{2}$. the location of the dynamics block at the model end is of prime importance. We conduct extensive experiments to confirm our observations on a set of performance-varying models with diverse backbones. Results support the need to incorporate a learnable dynamics block and its use as the final predictor.
- Abstract(参考訳): データモダリティ間のバウンダリは消えつつあるが、通常の成功したディープモデルは、時系列予測タスクにおいて単純なモデルによって依然として挑戦されている。
我々の仮説は、このタスクには、基礎となるダイナミックスを学習できるモデルが必要である、というものである。
本研究は,システム的および実証的研究の両面から検証することを提案する。
我々は、動的レンズを通して既存のモデルを分析するために、オリジナルの$\texttt{PRO-DYN}$nomenclatureを開発した。
2つの観測結果が得られた: $\textbf{1}$。
パフォーマンスの低いアーキテクチャは、少なくとも部分的に$\textbf{2}$で動的に学習する。
モデルエンドの ダイナミックスブロックの位置が 重要なのです
様々なバックボーンを持つ一連の性能変化モデルの観測を確認するために、広範囲な実験を行った。
その結果、学習可能なDynamicsブロックを組み込む必要がなくなり、最終的な予測子として使われるようになる。
関連論文リスト
- Intention-Conditioned Flow Occupancy Models [69.79049994662591]
大規模な事前学習は、今日の機械学習研究のやり方を根本的に変えた。
同じフレームワークを強化学習に適用することは、RLの中核的な課題に対処するための魅力的な方法を提供するので、魅力的です。
生成AIの最近の進歩は、高度に複雑な分布をモデリングするための新しいツールを提供している。
論文 参考訳(メタデータ) (2025-06-10T15:27:46Z) - Why Diffusion Models Don't Memorize: The Role of Implicit Dynamical Regularization in Training [8.824077990271503]
一般化から記憶への移行におけるトレーニングダイナミクスの役割について検討する。
私たちは、$tau_mathrmmem$がトレーニングセットサイズ$n$で線形的に増加するのに対して、$tau_mathrmgen$は一定であることに気付きました。
n$がモデル依存しきい値よりも大きくなると、無限のトレーニング時間でオーバーフィットが消える。
論文 参考訳(メタデータ) (2025-05-23T08:58:47Z) - Learning to Walk from Three Minutes of Real-World Data with Semi-structured Dynamics Models [9.318262213262866]
コンタクトリッチシステムのための半構造化力学モデルを学習するための新しいフレームワークを提案する。
我々は,従来の手法よりもはるかに少ないデータで高精度な長距離予測を行う。
実世界のUnitree Go1四足歩行ロボットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2024-10-11T18:11:21Z) - Neural Persistence Dynamics [8.197801260302642]
時間発展する点雲のトポロジにおける力学を学習する問題を考察する。
提案したモデル - $textitNeural Persistence Dynamics$ - は、パラメータ回帰タスクの多種多様なセットで最先端のパフォーマンスを大幅に上回る。
論文 参考訳(メタデータ) (2024-05-24T17:20:18Z) - Generalization capabilities and robustness of hybrid models grounded in physics compared to purely deep learning models [2.8686437689115363]
本研究では,流体力学応用における物理原理に基づく純粋深層学習モデルとハイブリッドモデルの一般化能力と堅牢性について検討する。
3つの自己回帰モデルを比較した: 適切な分解(POD)と長期記憶(LSTM)層を組み合わせたハイブリッドモデル(POD-DL)、畳み込みLSTM層を組み合わせた畳み込みオートエンコーダ(VAE)とConvLSTM層を組み合わせた変分オートエンコーダ(VAE)。
VAEモデルとConvLSTMモデルが正確に層流を予測する一方で、ハイブリッドPOD-DLモデルは他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-04-27T12:43:02Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Learning Differential Operators for Interpretable Time Series Modeling [34.32259687441212]
逐次データから解釈可能なPDEモデルを自動的に取得できる学習フレームワークを提案する。
我々のモデルは、貴重な解釈可能性を提供し、最先端モデルに匹敵する性能を達成することができる。
論文 参考訳(メタデータ) (2022-09-03T20:14:31Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
本稿では,暗黙的オブジェクトエンコーダ,ニューラルレージアンスフィールド(NeRF),グラフニューラルネットワークに基づく画像観測から構成予測モデルを学習する手法を提案する。
NeRFは3D以前の強みから、シーンを表現するための一般的な選択肢となっている。
提案手法では,学習した潜時空間にRTを応用し,そのモデルと暗黙のオブジェクトエンコーダを用いて潜時空間を情報的かつ効率的にサンプリングする。
論文 参考訳(メタデータ) (2022-02-24T01:31:29Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Learning Dynamics Models for Model Predictive Agents [28.063080817465934]
モデルに基づく強化学習は、データからテクトダイナミックスモデルを学習し、そのモデルを使用して振る舞いを最適化する。
本稿では, 動的モデル学習における設計選択の役割を, 基礎構造モデルとの比較により明らかにすることを目的としている。
論文 参考訳(メタデータ) (2021-09-29T09:50:25Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Beyond Occam's Razor in System Identification: Double-Descent when
Modeling Dynamics [0.0]
システム識別は、データから動的システムのモデルを構築することを目的とする。
モデル検証性能はモデル複雑性が増加するにつれてU字型曲線に従うことが典型的に観察される。
機械学習と統計学の最近の進歩は、このu字型モデルパフォーマンス曲線を「二重線」曲線が乗じる状況を観察している。
論文 参考訳(メタデータ) (2020-12-11T13:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。