Salience Adjustment for Context-Based Emotion Recognition
- URL: http://arxiv.org/abs/2507.15878v1
- Date: Thu, 17 Jul 2025 20:55:20 GMT
- Title: Salience Adjustment for Context-Based Emotion Recognition
- Authors: Bin Han, Jonathan Gratch,
- Abstract summary: This paper presents a salience-adjusted framework for context-aware emotion recognition with Bayesian Cue Integration (BCI) and Visual-Language Models (VLMs)<n>We evaluate this approach using human annotations and automatic emotion recognition systems in prisoner's dilemma scenarios.
- Score: 4.684464105981824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotion recognition in dynamic social contexts requires an understanding of the complex interaction between facial expressions and situational cues. This paper presents a salience-adjusted framework for context-aware emotion recognition with Bayesian Cue Integration (BCI) and Visual-Language Models (VLMs) to dynamically weight facial and contextual information based on the expressivity of facial cues. We evaluate this approach using human annotations and automatic emotion recognition systems in prisoner's dilemma scenarios, which are designed to evoke emotional reactions. Our findings demonstrate that incorporating salience adjustment enhances emotion recognition performance, offering promising directions for future research to extend this framework to broader social contexts and multimodal applications.
Related papers
- From Coarse to Nuanced: Cross-Modal Alignment of Fine-Grained Linguistic Cues and Visual Salient Regions for Dynamic Emotion Recognition [7.362433184546492]
Dynamic Facial Expression Recognition aims to identify human emotions from temporally evolving facial movements.<n>Our method integrates dynamic motion modeling, semantic text refinement, and token-level cross-modal alignment to facilitate the precise localization of emotionally salient features.
arXiv Detail & Related papers (2025-07-16T04:15:06Z) - Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.<n>We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.<n>Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.<n>Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Visual and Textual Prompts in VLLMs for Enhancing Emotion Recognition [16.317534822730256]
Vision Large Language Models (VLLMs) exhibit promising potential for multi-modal understanding, yet their application to video-based emotion recognition remains limited by insufficient spatial and contextual awareness.<n>Traditional approaches, which prioritize isolated facial features, often neglect critical non-verbal cues such as body language, environmental context, and social interactions.<n>We propose Set-of-Vision-Text Prompting (SoVTP), a novel framework that enhances zero-shot emotion recognition by integrating spatial annotations, physiological signals, and contextual cues into a unified prompting strategy.
arXiv Detail & Related papers (2025-04-24T03:26:30Z) - GatedxLSTM: A Multimodal Affective Computing Approach for Emotion Recognition in Conversations [35.63053777817013]
GatedxLSTM is a novel multimodal Emotion Recognition in Conversation (ERC) model.<n>It considers voice and transcripts of both the speaker and their conversational partner to identify the most influential sentences driving emotional shifts.<n>It achieves state-of-the-art (SOTA) performance among open-source methods in four-class emotion classification.
arXiv Detail & Related papers (2025-03-26T18:46:18Z) - When Words Smile: Generating Diverse Emotional Facial Expressions from Text [72.19705878257204]
We introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics.<n>Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent.
arXiv Detail & Related papers (2024-12-03T15:39:05Z) - In-Depth Analysis of Emotion Recognition through Knowledge-Based Large Language Models [3.8153944233011385]
This paper contributes to the emerging field of context-based emotion recognition.
We propose an approach that combines emotion recognition methods with Bayesian Cue Integration.
We test this approach in the context of interpreting facial expressions during a social task, the prisoner's dilemma.
arXiv Detail & Related papers (2024-07-17T06:39:51Z) - EmotionIC: emotional inertia and contagion-driven dependency modeling for emotion recognition in conversation [34.24557248359872]
We propose an emotional inertia and contagion-driven dependency modeling approach (EmotionIC) for ERC task.
Our EmotionIC consists of three main components, i.e., Identity Masked Multi-Head Attention (IMMHA), Dialogue-based Gated Recurrent Unit (DiaGRU) and Skip-chain Conditional Random Field (SkipCRF)
Experimental results show that our method can significantly outperform the state-of-the-art models on four benchmark datasets.
arXiv Detail & Related papers (2023-03-20T13:58:35Z) - Multi-Cue Adaptive Emotion Recognition Network [4.570705738465714]
We propose a new deep learning approach for emotion recognition based on adaptive multi-cues.
We compare the proposed approach with the state-of-art approaches in the CAER-S dataset.
arXiv Detail & Related papers (2021-11-03T15:08:55Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - Knowledge Bridging for Empathetic Dialogue Generation [52.39868458154947]
Lack of external knowledge makes empathetic dialogue systems difficult to perceive implicit emotions and learn emotional interactions from limited dialogue history.
We propose to leverage external knowledge, including commonsense knowledge and emotional lexical knowledge, to explicitly understand and express emotions in empathetic dialogue generation.
arXiv Detail & Related papers (2020-09-21T09:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.