AutoMeet: a proof-of-concept study of genAI to automate meetings in automotive engineering
- URL: http://arxiv.org/abs/2507.16054v1
- Date: Mon, 21 Jul 2025 20:44:53 GMT
- Title: AutoMeet: a proof-of-concept study of genAI to automate meetings in automotive engineering
- Authors: Simon Baeuerle, Max Radyschevski, Ulrike Pado,
- Abstract summary: Generative Artificial Intelligence (genAI) models like Large Language Models (LLMs) exhibit an impressive performance on spoken and written language processing.<n>This motivates a practical usage of genAI for knowledge management in engineering departments.<n>We implement an end-to-end pipeline to automate the entire meeting documentation workflow.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In large organisations, knowledge is mainly shared in meetings, which takes up significant amounts of work time. Additionally, frequent in-person meetings produce inconsistent documentation -- official minutes, personal notes, presentations may or may not exist. Shared information therefore becomes hard to retrieve outside of the meeting, necessitating lengthy updates and high-frequency meeting schedules. Generative Artificial Intelligence (genAI) models like Large Language Models (LLMs) exhibit an impressive performance on spoken and written language processing. This motivates a practical usage of genAI for knowledge management in engineering departments: using genAI for transcribing meetings and integrating heterogeneous additional information sources into an easily usable format for ad-hoc searches. We implement an end-to-end pipeline to automate the entire meeting documentation workflow in a proof-of-concept state: meetings are recorded and minutes are created by genAI. These are further made easily searchable through a chatbot interface. The core of our work is to test this genAI-based software tooling in a real-world engineering department and collect extensive survey data on both ethical and technical aspects. Direct feedback from this real-world setup points out both opportunities and risks: a) users agree that the effort for meetings could be significantly reduced with the help of genAI models, b) technical aspects are largely solved already, c) organizational aspects are crucial for a successful ethical usage of such a system.
Related papers
- Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
We introduce asynchronous AI agents capable of parallel processing and real-time tool-use.
Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting.
This work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.
arXiv Detail & Related papers (2024-10-28T23:57:19Z) - Where are we in audio deepfake detection? A systematic analysis over generative and detection models [59.09338266364506]
SONAR is a synthetic AI-Audio Detection Framework and Benchmark.<n>It provides a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content.<n>It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based detection systems.
arXiv Detail & Related papers (2024-10-06T01:03:42Z) - CI-Bench: Benchmarking Contextual Integrity of AI Assistants on Synthetic Data [7.357348564300953]
CI-Bench is a comprehensive benchmark for evaluating the ability of AI assistants to protect personal information during model inference.
We present a novel, scalable, multi-step data pipeline for generating natural communications, including dialogues and emails.
We formulate and evaluate a naive AI assistant to demonstrate the need for further study and careful training towards personal assistant tasks.
arXiv Detail & Related papers (2024-09-20T21:14:36Z) - Exploring Human-AI Collaboration in Agile: Customised LLM Meeting Assistants [0.0]
Action research study focuses on the integration of "AI assistants" in two Agile software development meetings.
We discuss the critical drivers of success, and establish a link between the use of AI and team collaboration dynamics.
arXiv Detail & Related papers (2024-04-23T09:55:25Z) - Automated User Story Generation with Test Case Specification Using Large Language Model [0.0]
We developed a tool "GeneUS" to automatically create user stories from requirements documents.
The output is provided in format leaving the possibilities open for downstream integration to the popular project management tools.
arXiv Detail & Related papers (2024-04-02T01:45:57Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
This article introduces Computational Management, a systematic approach to task automation.
The article offers three easy step-by-step procedures to begin the process of implementing AI within a workflow.
arXiv Detail & Related papers (2024-02-07T01:45:14Z) - Minuteman: Machine and Human Joining Forces in Meeting Summarization [2.900810893770134]
We propose a novel tool to enable efficient semi-automatic meeting minuting.
The tool provides a live transcript and a live meeting summary to the users, who can edit them in a collaborative manner.
The resulting application eases the cognitive load of the notetakers and allows them to easily catch up if they missed a part of the meeting due to absence or a lack of focus.
arXiv Detail & Related papers (2023-09-11T07:10:47Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - MONAI Label: A framework for AI-assisted Interactive Labeling of 3D
Medical Images [49.664220687980006]
The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models.
We present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models.
arXiv Detail & Related papers (2022-03-23T12:33:11Z) - A curated, ontology-based, large-scale knowledge graph of artificial
intelligence tasks and benchmarks [4.04540578484476]
Intelligence Task Ontology and Knowledge Graph (ITO) is a comprehensive resource on artificial intelligence tasks, benchmark results and performance metrics.
ITO is a richly structured and manually curated resource on artificial intelligence tasks, benchmark results and performance metrics.
The goal of ITO is to enable precise and network-based analyses of the global landscape of AI tasks and capabilities.
arXiv Detail & Related papers (2021-10-04T13:25:53Z) - Knowledge Distillation for Improved Accuracy in Spoken Question
Answering [63.72278693825945]
We devise a training strategy to perform knowledge distillation from spoken documents and written counterparts.
Our work makes a step towards distilling knowledge from the language model as a supervision signal.
Experiments demonstrate that our approach outperforms several state-of-the-art language models on the Spoken-SQuAD dataset.
arXiv Detail & Related papers (2020-10-21T15:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.