論文の概要: Bipartite Patient-Modality Graph Learning with Event-Conditional Modelling of Censoring for Cancer Survival Prediction
- arxiv url: http://arxiv.org/abs/2507.16363v1
- Date: Tue, 22 Jul 2025 08:54:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.037309
- Title: Bipartite Patient-Modality Graph Learning with Event-Conditional Modelling of Censoring for Cancer Survival Prediction
- Title(参考訳): 癌生存予測のためのイベントコンディションモデルによる患者・モダリティグラフ学習
- Authors: Hailin Yue, Hulin Kuang, Jin Liu, Junjian Li, Lanlan Wang, Mengshen He, Jianxin Wang,
- Abstract要約: がん生存予測のための検閲の事象条件モデルを用いたバイパーティイト型患者モダリティグラフ学習(CenSurv)を提案する。
CenSurvは、動的モーメント累積信頼度を用いて信頼できる検閲データを選択し、これらの検閲データにより正確な生存時間を割り当て、トレーニングに非検閲データとして組み込む。
5つの公的ながんデータセットに関する総合的な評価は、最高の最先端よりもCenSurvの方が優れていることを示している。
- 参考スコア(独自算出の注目度): 9.322583929643908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting the survival of cancer patients is crucial for personalized treatment. However, existing studies focus solely on the relationships between samples with known survival risks, without fully leveraging the value of censored samples. Furthermore, these studies may suffer performance degradation in modality-missing scenarios and even struggle during the inference process. In this study, we propose a bipartite patient-modality graph learning with event-conditional modelling of censoring for cancer survival prediction (CenSurv). Specifically, we first use graph structure to model multimodal data and obtain representation. Then, to alleviate performance degradation in modality-missing scenarios, we design a bipartite graph to simulate the patient-modality relationship in various modality-missing scenarios and leverage a complete-incomplete alignment strategy to explore modality-agnostic features. Finally, we design a plug-and-play event-conditional modeling of censoring (ECMC) that selects reliable censored data using dynamic momentum accumulation confidences, assigns more accurate survival times to these censored data, and incorporates them as uncensored data into training. Comprehensive evaluations on 5 publicly cancer datasets showcase the superiority of CenSurv over the best state-of-the-art by 3.1% in terms of the mean C-index, while also exhibiting excellent robustness under various modality-missing scenarios. In addition, using the plug-and-play ECMC module, the mean C-index of 8 baselines increased by 1.3% across 5 datasets. Code of CenSurv is available at https://github.com/yuehailin/CenSurv.
- Abstract(参考訳): がん患者の生存を正確に予測することはパーソナライズされた治療に不可欠である。
しかし、既存の研究では、検閲されたサンプルの価値を完全に活用することなく、既知の生存リスクを持つサンプル間の関係のみに焦点を当てている。
さらに、これらの研究は、モダリティを欠くシナリオにおける性能劣化や、推論過程における苦労に悩まされる可能性がある。
本研究では,癌生存予測のための検閲の事象条件モデルを用いたバイパーティイト型患者モダリティグラフ学習を提案する。
具体的には、まずグラフ構造を用いてマルチモーダルデータをモデル化し、表現を得る。
そこで,モダリティを欠くシナリオにおけるパフォーマンス劣化を軽減するために,様々なモダリティのシナリオにおける患者とモダリティの関係をシミュレートする二部グラフを設計し,完全不完全なアライメント戦略を活用し,モダリティに依存しない特徴を探索する。
最後に、動的モーメント累積信頼度を用いて信頼性の高い検閲データを選択し、これらの検閲データにより正確な生存時間を割り当て、非検閲データとしてトレーニングに組み込む、検閲(ECMC)のプラグアンドプレイイベント条件モデリングを設計する。
5つの公的ながんデータセットに関する総合的な評価では、C-indexの平均値の3.1%よりもCenSurvの方が優れており、様々なモダリティを欠くシナリオでは優れた堅牢性を示している。
さらに、プラグアンドプレイECMCモジュールを使うことで、5つのデータセットで8つのベースラインの平均Cインデックスが1.3%増加した。
CenSurvのコードはhttps://github.com/yuehailin/CenSurv.comで公開されている。
関連論文リスト
- Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
論文 参考訳(メタデータ) (2025-05-30T14:42:02Z) - Survival Prediction in Lung Cancer through Multi-Modal Representation Learning [9.403446155541346]
本稿では,CTとPETの包括的情報と関連するゲノムデータを用いた生存予測手法を提案する。
我々は,マルチモーダル画像データと遺伝的情報を統合することにより,生存率の予測モデルを構築することを目的とする。
論文 参考訳(メタデータ) (2024-09-30T10:42:20Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets [0.33923727961771083]
肺がんは、世界中でがん関連死亡の原因となっている。
医療画像への人工知能の統合が拡大するにつれ、堅牢なAIモデルの開発と評価は、大規模で注釈の付いたデータセットへのアクセスを必要としている。
我々は,3次元結節検出と肺がん分類のためのディープラーニングモデルをベンチマークした。
論文 参考訳(メタデータ) (2024-05-07T18:36:40Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
乳がん生存リスク階層化のための新しい深層学習手法を提案する。
画像特徴抽出には視覚変換器、特にMaxViTモデルを使用し、患者レベルでの複雑な画像関係のキャプチャには自己注意を用いる。
二重クロスアテンション機構はこれらの特徴を遺伝データと融合させ、臨床データを最終層に組み込んで予測精度を高める。
論文 参考訳(メタデータ) (2024-02-19T02:31:36Z) - TripleSurv: Triplet Time-adaptive Coordinate Loss for Survival Analysis [15.496918127515665]
本稿では,学習過程の複雑さを扱える時間適応座標損失関数TripleSurvを提案する。
我々のTripleSurvは3つの実世界の生存データセットと公開合成データセットで評価されている。
論文 参考訳(メタデータ) (2024-01-05T08:37:57Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
MICCAI 2021 ヘッドとネックタマ (HECKTOR) セグメンテーションと結果予測の課題は、セグメンテーション法を比較するためのプラットフォームを作成する。
腫瘍容積セグメンテーションのために複数のニューラルネットワークを訓練し,これらのセグメンテーションを組込み,平均Dice類似度係数0.75をクロスバリデーションで達成した。
患者進行自由生存の予測のために,臨床,放射線学,深層学習機能を組み合わせたCox比例的ハザード回帰法を提案する。
論文 参考訳(メタデータ) (2021-11-06T10:28:48Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。