GG-BBQ: German Gender Bias Benchmark for Question Answering
- URL: http://arxiv.org/abs/2507.16410v1
- Date: Tue, 22 Jul 2025 10:02:28 GMT
- Title: GG-BBQ: German Gender Bias Benchmark for Question Answering
- Authors: Shalaka Satheesh, Katrin Klug, Katharina Beckh, Héctor Allende-Cid, Sebastian Houben, Teena Hassan,
- Abstract summary: We evaluate gender bias in German Large Language Models (LLMs) using the Bias Benchmark for Question Answering by Parrish et al.<n>Specifically, the templates in the gender identity subset of this English dataset were machine translated into German.<n>We find that manual revision of the translation is crucial when creating datasets for gender bias evaluation.
- Score: 1.4545246152596758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the context of Natural Language Processing (NLP), fairness evaluation is often associated with the assessment of bias and reduction of associated harm. In this regard, the evaluation is usually carried out by using a benchmark dataset, for a task such as Question Answering, created for the measurement of bias in the model's predictions along various dimensions, including gender identity. In our work, we evaluate gender bias in German Large Language Models (LLMs) using the Bias Benchmark for Question Answering by Parrish et al. (2022) as a reference. Specifically, the templates in the gender identity subset of this English dataset were machine translated into German. The errors in the machine translated templates were then manually reviewed and corrected with the help of a language expert. We find that manual revision of the translation is crucial when creating datasets for gender bias evaluation because of the limitations of machine translation from English to a language such as German with grammatical gender. Our final dataset is comprised of two subsets: Subset-I, which consists of group terms related to gender identity, and Subset-II, where group terms are replaced with proper names. We evaluate several LLMs used for German NLP on this newly created dataset and report the accuracy and bias scores. The results show that all models exhibit bias, both along and against existing social stereotypes.
Related papers
- Are All Spanish Doctors Male? Evaluating Gender Bias in German Machine Translation [0.0]
WinoMTDE is a new gender bias evaluation test set designed to assess occupational stereotyping and underrepresentation in German machine translation systems.<n>The dataset comprises 288 German sentences that are balanced in regard to gender, as well as stereotype, which was annotated using German labor statistics.
arXiv Detail & Related papers (2025-02-26T12:46:59Z) - Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
Existing machine translation gender bias evaluations are primarily focused on male and female genders.
This study presents a benchmark AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words)
We propose a novel process to evaluate gender bias based on the Emotional Attitude Score (EAS), which is used to quantify ambiguous attitude words.
arXiv Detail & Related papers (2024-07-23T08:13:51Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
This paper introduces the GenderBias-emphVL benchmark to evaluate occupation-related gender bias in Large Vision-Language Models.
Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs and state-of-the-art commercial APIs.
Our findings reveal widespread gender biases in existing LVLMs.
arXiv Detail & Related papers (2024-06-30T05:55:15Z) - What is Your Favorite Gender, MLM? Gender Bias Evaluation in Multilingual Masked Language Models [8.618945530676614]
This paper proposes an approach to estimate gender bias in multilingual lexicons from 5 languages: Chinese, English, German, Portuguese, and Spanish.
A novel model-based method is presented to generate sentence pairs for a more robust analysis of gender bias.
Our results suggest that gender bias should be studied on a large dataset using multiple evaluation metrics for best practice.
arXiv Detail & Related papers (2024-04-09T21:12:08Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - Counter-GAP: Counterfactual Bias Evaluation through Gendered Ambiguous
Pronouns [53.62845317039185]
Bias-measuring datasets play a critical role in detecting biased behavior of language models.
We propose a novel method to collect diverse, natural, and minimally distant text pairs via counterfactual generation.
We show that four pre-trained language models are significantly more inconsistent across different gender groups than within each group.
arXiv Detail & Related papers (2023-02-11T12:11:03Z) - Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution
and Machine Translation [10.542861450223128]
We find grammatical patterns indicating stereotypical and non-stereotypical gender-role assignments in corpora from three domains.
We manually verify the quality of our corpus and use it to evaluate gender bias in various coreference resolution and machine translation models.
arXiv Detail & Related papers (2021-09-08T18:14:11Z) - Investigating Failures of Automatic Translation in the Case of
Unambiguous Gender [13.58884863186619]
Transformer based models are the modern work horses for neural machine translation (NMT)
We observe a systemic and rudimentary class of errors made by transformer based models with regards to translating from a language that doesn't mark gender on nouns into others that do.
We release an evaluation scheme and dataset for measuring the ability of transformer based NMT models to translate gender correctly.
arXiv Detail & Related papers (2021-04-16T00:57:36Z) - The Gap on GAP: Tackling the Problem of Differing Data Distributions in
Bias-Measuring Datasets [58.53269361115974]
Diagnostic datasets that can detect biased models are an important prerequisite for bias reduction within natural language processing.
undesired patterns in the collected data can make such tests incorrect.
We introduce a theoretically grounded method for weighting test samples to cope with such patterns in the test data.
arXiv Detail & Related papers (2020-11-03T16:50:13Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.