PromptAL: Sample-Aware Dynamic Soft Prompts for Few-Shot Active Learning
- URL: http://arxiv.org/abs/2507.16424v1
- Date: Tue, 22 Jul 2025 10:17:42 GMT
- Title: PromptAL: Sample-Aware Dynamic Soft Prompts for Few-Shot Active Learning
- Authors: Hui Xiang, Jinqiao Shi, Ting Zhang, Xiaojie Zhao, Yong Liu, Yong Ma,
- Abstract summary: Active learning (AL) aims to optimize model training and reduce annotation costs by selecting the most informative samples for labeling.<n>We propose a hybrid AL framework, termed textbfPromptAL (Sample-Aware Dynamic Soft textbfPrompts for Few-Shot textbfActive textbfL).<n>This framework accounts for the contribution of each unlabeled data point in aligning the current empirical distribution with the target distribution.
- Score: 17.336121253746335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active learning (AL) aims to optimize model training and reduce annotation costs by selecting the most informative samples for labeling. Typically, AL methods rely on the empirical distribution of labeled data to define the decision boundary and perform uncertainty or diversity estimation, subsequently identifying potential high-quality samples. In few-shot scenarios, the empirical distribution often diverges significantly from the target distribution, causing the decision boundary to shift away from its optimal position. However, existing methods overlook the role of unlabeled samples in enhancing the empirical distribution to better align with the target distribution, resulting in a suboptimal decision boundary and the selection of samples that inadequately represent the target distribution. To address this, we propose a hybrid AL framework, termed \textbf{PromptAL} (Sample-Aware Dynamic Soft \textbf{Prompts} for Few-Shot \textbf{A}ctive \textbf{L}earning). This framework accounts for the contribution of each unlabeled data point in aligning the current empirical distribution with the target distribution, thereby optimizing the decision boundary. Specifically, PromptAL first leverages unlabeled data to construct sample-aware dynamic soft prompts that adjust the model's predictive distribution and decision boundary. Subsequently, based on the adjusted decision boundary, it integrates uncertainty estimation with both global and local diversity to select high-quality samples that more accurately represent the target distribution. Experimental results on six in-domain and three out-of-domain datasets show that PromptAL achieves superior performance over nine baselines. Our codebase is openly accessible.
Related papers
- Importance Weighted Score Matching for Diffusion Samplers with Enhanced Mode Coverage [16.94974733994214]
prevailing methods often circumvent the lack of target data by optimizing reverse KL-based objectives.<n>We propose a principled approach for training diffusion-based samplers by directly targeting an objective analogous to the forward KL divergence.<n>Our approach consistently outperforms existing neural samplers across all distributional distance metrics.
arXiv Detail & Related papers (2025-05-26T02:48:26Z) - Direct Distributional Optimization for Provable Alignment of Diffusion Models [39.048284342436666]
We introduce a novel alignment method for diffusion models from distribution optimization perspectives.<n>We first formulate the problem as a generic regularized loss minimization over probability distributions.<n>We enable sampling from the learned distribution by approximating its score function via Doob's $h$-transform technique.
arXiv Detail & Related papers (2025-02-05T07:35:15Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional dependencies for general score-mismatched diffusion samplers.<n>We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.<n>This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Distributionally robust risk evaluation with an isotonic constraint [20.74502777102024]
Distributionally robust learning aims to control the worst-case statistical performance within an uncertainty set of candidate distributions.<n>We propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate.<n> Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.
arXiv Detail & Related papers (2024-07-09T13:56:34Z) - Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
We propose a novel bi-discriminator domain adversarial neural network with class-level gradient alignment.
BACG resorts to gradient signals and second-order probability estimation for better alignment of domain distributions.
In addition, inspired by contrastive learning, we develop a memory bank-based variant, i.e. Fast-BACG, which can greatly shorten the training process.
arXiv Detail & Related papers (2023-10-21T09:53:17Z) - Probabilistic Test-Time Generalization by Variational Neighbor-Labeling [62.158807685159736]
This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed on unseen target domains.
Probability pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time.
Variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels.
arXiv Detail & Related papers (2023-07-08T18:58:08Z) - Statistical Inference Under Constrained Selection Bias [20.862583584531322]
We propose a framework that enables statistical inference in the presence of selection bias.
The output is high-probability bounds on the value of an estimand for the target distribution.
We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks.
arXiv Detail & Related papers (2023-06-05T23:05:26Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Multi-Class Data Description for Out-of-distribution Detection [25.853322158250435]
Deep-MCDD is effective to detect out-of-distribution (OOD) samples as well as classify in-distribution (ID) samples.
By integrating the concept of Gaussian discriminant analysis into deep neural networks, we propose a deep learning objective to learn class-conditional distributions.
arXiv Detail & Related papers (2021-04-02T08:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.