論文の概要: Estimating Treatment Effects with Independent Component Analysis
- arxiv url: http://arxiv.org/abs/2507.16467v1
- Date: Tue, 22 Jul 2025 11:16:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.084374
- Title: Estimating Treatment Effects with Independent Component Analysis
- Title(参考訳): 独立成分分析による治療効果の推定
- Authors: Patrik Reizinger, Lester Mackey, Wieland Brendel, Rahul Krishnan,
- Abstract要約: 独立成分分析(ICA)は部分線形回帰(PLR)モデルにおける因果効果推定に有効であることを示す。
線形ICAはガウスの共同設立者や非線形ニュアンスの存在下でも正確に複数の治療効果を推定できることがわかった。
- 参考スコア(独自算出の注目度): 30.83679633039883
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of causal inference has developed a variety of methods to accurately estimate treatment effects in the presence of nuisance. Meanwhile, the field of identifiability theory has developed methods like Independent Component Analysis (ICA) to identify latent sources and mixing weights from data. While these two research communities have developed largely independently, they aim to achieve similar goals: the accurate and sample-efficient estimation of model parameters. In the partially linear regression (PLR) setting, Mackey et al. (2018) recently found that estimation consistency can be improved with non-Gaussian treatment noise. Non-Gaussianity is also a crucial assumption for identifying latent factors in ICA. We provide the first theoretical and empirical insights into this connection, showing that ICA can be used for causal effect estimation in the PLR model. Surprisingly, we find that linear ICA can accurately estimate multiple treatment effects even in the presence of Gaussian confounders or nonlinear nuisance.
- Abstract(参考訳): 因果推論の分野は、ニュアンスの存在下での処理効果を正確に推定する様々な方法を開発した。
一方、識別可能性理論の分野は、潜伏源を同定し、データから重みを混合する独立成分分析(ICA)のような手法を開発した。
これら2つの研究コミュニティは、主に独立して発展してきたが、モデルパラメータの正確でサンプル効率の高い推定という、同様の目標を達成することを目指している。
部分線形回帰(PLR)設定において、Mackey et al (2018) は非ガウス的処理ノイズにより推定整合性を改善することができることを示した。
非ガウス性もまたICAの潜伏因子を特定する重要な仮定である。
PLRモデルにおいてICAを因果効果推定に用いることができることを示す。
驚いたことに、線形ICAはガウスの共同設立者や非線形ニュアンスの存在下でも正確に複数の治療効果を推定できる。
関連論文リスト
- A Generative Framework for Causal Estimation via Importance-Weighted Diffusion Distillation [55.53426007439564]
観察データから個別化された治療効果を推定することは因果推論における中心的な課題である。
逆確率重み付け(IPW)は、この問題に対するよく確立された解決策であるが、現代のディープラーニングフレームワークへの統合は依然として限られている。
本稿では,拡散モデルの事前学習と重み付きスコア蒸留を組み合わせた新しい生成フレームワークであるIWDDを提案する。
論文 参考訳(メタデータ) (2025-05-16T17:00:52Z) - Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction [40.96453902709292]
実世界の応用における現象を利用した事前学習戦略を提案する。
医学では、同じ生物学的シグナル伝達経路の成分は、ベースラインリスクと治療反応の両方に頻繁に影響を及ぼす。
この構造を用いて,リスク予測と因果効果推定の相乗効果を利用するモデルを構築した。
論文 参考訳(メタデータ) (2025-05-01T05:12:14Z) - Black Box Causal Inference: Effect Estimation via Meta Prediction [56.277798874118425]
因果推論はデータセットレベルの予測問題であり,アルゴリズム設計を学習プロセスにオフロードする。
我々は,ブラックボックス因果推論 (BBCI) と呼ばれる,サンプルデータセットと効果ペアの因果効果の予測を学習することにより,ブラックボックス方式で推定器を構築する。
我々は,いくつかの因果推論問題に対して,BBCIを用いた平均治療効果(ATE)と条件平均治療効果(CATE)を正確に推定した。
論文 参考訳(メタデータ) (2025-03-07T23:43:19Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Uncertainty Quantification in Heterogeneous Treatment Effect Estimation
with Gaussian-Process-Based Partially Linear Model [2.1212179660694104]
個人間での不均一な治療効果を推定することは、批判的な意思決定を行うための統計ツールとして注目されている。
比較的小さなサンプルサイズ設定での意思決定を支援するために,治療効果推定の不確かさを定量化するベイズ推論フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-16T12:42:28Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Identification and multiply robust estimation in causal mediation analysis across principal strata [7.801213477601286]
治療後イベントの存在下での因果仲裁の評価について検討する。
本研究では,各媒介推定値に対する効率的な影響関数を導出する。
論文 参考訳(メタデータ) (2023-04-20T00:39:20Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
本稿では, 高い無知性仮定の下での平均処理推定値のバイアスの上限について提案する。
新たな付加型ニューラルネットワークアーキテクチャを活用することにより、目的関数としてこの上限を実装する。
提案手法は、因果推論のためのベンチマークデータセットを再検討し、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-07T07:42:40Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
因果推論における(局所)量子化処理効果((L)QTE)の効率的な推定式を検討する。
Debiased Machine Learning (DML)は、高次元のニュアンスを推定するデータ分割手法である。
本稿では、この負担のかかるステップを避けるために、局所的脱バイアス機械学習(LDML)を提案する。
論文 参考訳(メタデータ) (2019-12-30T14:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。