SeqSeg: Learning Local Segments for Automatic Vascular Model Construction
- URL: http://arxiv.org/abs/2501.15712v1
- Date: Mon, 27 Jan 2025 00:31:30 GMT
- Title: SeqSeg: Learning Local Segments for Automatic Vascular Model Construction
- Authors: Numi Sveinsson Cepero, Shawn C. Shadden,
- Abstract summary: SeqSeg is a novel deep learning based automatic tracing and segmentation algorithm for constructing image-based vascular models.<n>We demonstrate that SeqSeg is able to segment more complete vasculature and is able to generalize to vascular structures not annotated in the training data.
- Score: 2.4567747195551175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computational modeling of cardiovascular function has become a critical part of diagnosing, treating and understanding cardiovascular disease. Most strategies involve constructing anatomically accurate computer models of cardiovascular structures, which is a multistep, time-consuming process. To improve the model generation process, we herein present SeqSeg (sequential segmentation): a novel deep learning based automatic tracing and segmentation algorithm for constructing image-based vascular models. SeqSeg leverages local U-Net-based inference to sequentially segment vascular structures from medical image volumes. We tested SeqSeg on CT and MR images of aortic and aortofemoral models and compared the predictions to those of benchmark 2D and 3D global nnU-Net models, which have previously shown excellent accuracy for medical image segmentation. We demonstrate that SeqSeg is able to segment more complete vasculature and is able to generalize to vascular structures not annotated in the training data.
Related papers
- GRASPing Anatomy to Improve Pathology Segmentation [67.98147643529309]
We introduce GRASP, a modular plug-and-play framework that enhances pathology segmentation models.<n>We evaluate GRASP on two PET/CT datasets, conduct systematic ablation studies, and investigate the framework's inner workings.
arXiv Detail & Related papers (2025-08-05T12:26:36Z) - Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - Using Foundation Models as Pseudo-Label Generators for Pre-Clinical 4D Cardiac CT Segmentation [5.4689325272353955]
We propose a self-training approach to generate accurate pseudo-labels for pig cardiac CT.<n>Our method requires no manually annotated pig data, relying instead on iterative updates to improve segmentation quality.<n>Although our results are encouraging, there remains room for improvement, for example by incorporating more sophisticated self-training strategies and by exploring additional foundation models and other cardiac imaging technologies.
arXiv Detail & Related papers (2025-05-14T17:07:30Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.
We propose a novel continual learning-driven CT model that can segment complete anatomies.
Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
This paper proposes a novel Kalman filter based Linear Deformable Diffusion (KLDD) model for retinal vessel segmentation.
Our model employs a diffusion process that iteratively refines the segmentation, leveraging the flexible receptive fields of deformable convolutions.
Experiments are evaluated on retinal fundus image datasets (DRIVE, CHASE_DB1) and the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-09-19T14:21:38Z) - Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation [0.8897689150430447]
We conduct the first systematic benchmark study for variants of 3D U-shaped models.
Our study examines the impact of different attention mechanisms, the number of resolution stages, and network configurations on segmentation accuracy and computational complexity.
arXiv Detail & Related papers (2024-02-05T17:43:02Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
This paper proposes IterMiUnet, a new lightweight convolution-based segmentation model.
It overcomes its heavily parametrized nature by incorporating the encoder-decoder structure of MiUnet model within it.
The proposed model has a lot of potential to be utilized as a tool for the early diagnosis of many diseases.
arXiv Detail & Related papers (2022-08-02T14:33:14Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
We aim at modeling shape explicitly and using it to help medical image segmentation.
Previous methods proposed Variational Autoencoder (VAE) based models to learn the distribution of shape for a particular organ.
We propose a new unsupervised domain adaptation pipeline based on a pseudo loss and a VAE reconstruction loss under a teacher-student learning paradigm.
arXiv Detail & Related papers (2022-07-06T09:16:42Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Contour Transformer Network for One-shot Segmentation of Anatomical
Structures [26.599337546171732]
We present Contour Transformer Network (CTN), a one-shot anatomy segmentation method with a naturally built-in human-in-the-loop mechanism.
On segmentation tasks of four different anatomies, we demonstrate that our one-shot learning method significantly outperforms non-learning-based methods.
With minimal human-in-the-loop editing feedback, the segmentation performance can be further improved to surpass the fully supervised methods.
arXiv Detail & Related papers (2020-12-02T19:42:18Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
Methods that permit to produce accurate anatomical structure segmentation without using a large amount of fully annotated training images are highly desirable.
We propose Contour Transformer Network (CTN), a one-shot anatomy segmentor including a naturally built-in human-in-the-loop mechanism.
We demonstrate that our one-shot learning method significantly outperforms non-learning-based methods and performs competitively to the state-of-the-art fully supervised deep learning approaches.
arXiv Detail & Related papers (2020-07-06T20:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.