論文の概要: Multi-objective Portfolio Optimization Via Gradient Descent
- arxiv url: http://arxiv.org/abs/2507.16717v1
- Date: Tue, 22 Jul 2025 15:55:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 21:34:14.195001
- Title: Multi-objective Portfolio Optimization Via Gradient Descent
- Title(参考訳): 多目的ポートフォリオ最適化
- Authors: Christian Oliva, Pedro R. Ventura, Luis F. Lago-Fernández,
- Abstract要約: 自動微分を用いた勾配勾配勾配を用いた多目的ポートフォリオ最適化(MPO)のためのベンチマークフレームワークを提案する。
単目的のセットアップから複雑な多目的のケースまで,6つの実験シナリオでフレームワークを評価した。
提案手法は,複数の目的と制約をモデル化する柔軟性を向上しつつ,競争性能を向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional approaches to portfolio optimization, often rooted in Modern Portfolio Theory and solved via quadratic programming or evolutionary algorithms, struggle with scalability or flexibility, especially in scenarios involving complex constraints, large datasets and/or multiple conflicting objectives. To address these challenges, we introduce a benchmark framework for multi-objective portfolio optimization (MPO) using gradient descent with automatic differentiation. Our method supports any optimization objective, such as minimizing risk measures (e.g., CVaR) or maximizing Sharpe ratio, along with realistic constraints, such as tracking error limits, UCITS regulations, or asset group restrictions. We have evaluated our framework across six experimental scenarios, from single-objective setups to complex multi-objective cases, and have compared its performance against standard solvers like CVXPY and SKFOLIO. Our results show that our method achieves competitive performance while offering enhanced flexibility for modeling multiple objectives and constraints. We aim to provide a practical and extensible tool for researchers and practitioners exploring advanced portfolio optimization problems in real-world conditions.
- Abstract(参考訳): ポートフォリオ最適化への伝統的なアプローチは、しばしばモダンポートフォリオ理論に根ざし、二次的プログラミングや進化的アルゴリズムを通じて解決され、スケーラビリティや柔軟性に苦しむ。
これらの課題に対処するために,自動微分を用いた勾配勾配勾配を用いた多目的ポートフォリオ最適化(MPO)のためのベンチマークフレームワークを提案する。
本手法は,リスク対策(CVaR)の最小化やシャープ比の最大化といった最適化目標に加えて,エラーの追跡やUCITS規制,アセットグループ制限といった現実的な制約もサポートする。
単目的のセットアップから複雑な多目的のケースまで,6つの実験シナリオでフレームワークを評価し,CVXPYやSKFOLIOといった標準的な解法と比較した。
提案手法は,複数の目的と制約をモデル化する柔軟性を向上しつつ,競争性能を向上することを示す。
我々は,現実の状況下でのポートフォリオ最適化の先進的な課題を探究する研究者や実践者に対して,実用的で拡張可能なツールを提供することを目指している。
関連論文リスト
- Preference-based Multi-Objective Reinforcement Learning [5.031225669460861]
本稿では、嗜好のMORLフレームワークへの統合を形式化した嗜好ベースのMORL(Pb-MORL)を紹介する。
そこで本提案手法は,提案した嗜好に適合する多目的報酬モデルを構築する。
ベンチマーク多目的タスク,マルチエネルギー管理タスク,および多線高速道路における自律運転タスクにおける実験結果から,本手法の競争力向上が示唆された。
論文 参考訳(メタデータ) (2025-07-18T16:43:04Z) - Continual Optimization with Symmetry Teleportation for Multi-Task Learning [73.28772872740744]
マルチタスク学習(MTL)は、1つのモデルを用いて複数のタスクの同時学習を可能にする。
シンメトリ・テレポーテーション(COST)を用いた連続最適化に基づく新しい手法を提案する。
COSTは、競合の勾配を減らすために、損失ランドスケープに別の損失等価点を求める。
論文 参考訳(メタデータ) (2025-03-06T02:58:09Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation [10.77641869521259]
本論文では,複数の未知領域上で定義されたレベルセットのアクティブな学習と,実現可能な領域内での多目的最適化のバランスをとる,制約付き多目的ベイズ最適化アルゴリズムCOMBOOを提案する。
理論的解析と経験的証拠の両方を提供し、様々な合成ベンチマークや実世界の応用に対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-11-06T03:38:00Z) - Optimization-Driven Adaptive Experimentation [7.948144726705323]
実世界の実験には、バッチで遅延したフィードバック、非定常性、複数の目的と制約、そして(時には)パーソナライゼーションが含まれる。
これらの課題にプロブレム単位で対処するための適応的手法の調整は不可能であり、静的設計はデファクトスタンダードのままである。
本稿では,多種多様な目的,制約,統計的手順を柔軟に組み込む数学的プログラミングの定式化について述べる。
論文 参考訳(メタデータ) (2024-08-08T16:29:09Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Rewards-in-Context: Multi-objective Alignment of Foundation Models with Dynamic Preference Adjustment [46.44464839353993]
リワード・イン・コンテキスト(Rewards-in-Context, RiC)を導入する。
RiCは単一のファンデーションモデルの教師付き微調整のみを必要とし、推論時間中にユーザの好みを動的に調整する。
論文 参考訳(メタデータ) (2024-02-15T18:58:31Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - An Instance Space Analysis of Constrained Multi-Objective Optimization
Problems [1.314903445595385]
我々は,制約付き多目的進化アルゴリズム(CMOEA)の性能とCMOPインスタンス特性の関係について,ISA(インスタンス空間解析)を用いて検討する。
6つのCMOPベンチマークスイートと15のCMOEAにまたがる問題アルゴリズムのフットプリントを詳細に評価する。
我々は、非支配的集合の分離と制約と目的の進化可能性の相関という2つの重要な特徴が、アルゴリズムの性能に最も大きな影響を与えると結論付けた。
論文 参考訳(メタデータ) (2022-03-02T04:28:11Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Empirical Study on the Benefits of Multiobjectivization for Solving
Single-Objective Problems [0.0]
局所オプティマはしばしばアルゴリズムの進行を防ぎ、深刻な脅威を引き起こす。
マルチオブジェクトの勾配に基づく高度な可視化技術を用いて,出現するマルチオブジェクトの景観の特性を図示し,考察した。
我々は,多目的COCOMOGSAがこれらの特性を利用して局所トラップを克服できることを実証的に示す。
論文 参考訳(メタデータ) (2020-06-25T14:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。