Temporally-Constrained Video Reasoning Segmentation and Automated Benchmark Construction
- URL: http://arxiv.org/abs/2507.16718v1
- Date: Tue, 22 Jul 2025 15:59:21 GMT
- Title: Temporally-Constrained Video Reasoning Segmentation and Automated Benchmark Construction
- Authors: Yiqing Shen, Chenjia Li, Chenxiao Fan, Mathias Unberath,
- Abstract summary: We introduce temporally-constrained video reasoning segmentation, a novel task formulation that requires models to implicitly infer when target objects become contextually relevant.<n>We also present TCVideoRS, a temporally-constrained video RS dataset containing 52 samples using the videos from the MVOR dataset.
- Score: 8.214041057237491
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional approaches to video segmentation are confined to predefined object categories and cannot identify out-of-vocabulary objects, let alone objects that are not identified explicitly but only referred to implicitly in complex text queries. This shortcoming limits the utility for video segmentation in complex and variable scenarios, where a closed set of object categories is difficult to define and where users may not know the exact object category that will appear in the video. Such scenarios can arise in operating room video analysis, where different health systems may use different workflows and instrumentation, requiring flexible solutions for video analysis. Reasoning segmentation (RS) now offers promise towards such a solution, enabling natural language text queries as interaction for identifying object to segment. However, existing video RS formulation assume that target objects remain contextually relevant throughout entire video sequences. This assumption is inadequate for real-world scenarios in which objects of interest appear, disappear or change relevance dynamically based on temporal context, such as surgical instruments that become relevant only during specific procedural phases or anatomical structures that gain importance at particular moments during surgery. Our first contribution is the introduction of temporally-constrained video reasoning segmentation, a novel task formulation that requires models to implicitly infer when target objects become contextually relevant based on text queries that incorporate temporal reasoning. Since manual annotation of temporally-constrained video RS datasets would be expensive and limit scalability, our second contribution is an innovative automated benchmark construction method. Finally, we present TCVideoRSBenchmark, a temporally-constrained video RS dataset containing 52 samples using the videos from the MVOR dataset.
Related papers
- ThinkVideo: High-Quality Reasoning Video Segmentation with Chain of Thoughts [64.93416171745693]
Reasoning Video Object is a challenging task, which generates a mask sequence from an input video and an implicit, complex text query.<n>Existing works probe into the problem by finetuning Multimodal Large Language Models (MLLM) for segmentation-based output, while still falling short in difficult cases on videos given temporally-sensitive queries.<n>We propose ThinkVideo, a novel framework which leverages the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these challenges.
arXiv Detail & Related papers (2025-05-24T07:01:31Z) - Caption Anything in Video: Fine-grained Object-centric Captioning via Spatiotemporal Multimodal Prompting [60.58915701973593]
We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning.<n>Cat-V integrates three key components: a Segmenter based on SAMI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-UniVL, and a Captioner using Intern-2.5.<n>Our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data.
arXiv Detail & Related papers (2025-04-07T22:35:36Z) - One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos [41.34787907803329]
VideoLISA is a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos.
VideoLISA generates temporally consistent segmentation masks in videos based on language instructions.
arXiv Detail & Related papers (2024-09-29T07:47:15Z) - 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation [72.54357831350762]
We propose a semantic embedding video object segmentation model and use the salient features of objects as query representations.
We trained our model on a large-scale video object segmentation dataset.
Our model achieves first place (textbf84.45%) in the test set of Complex Video Object Challenge.
arXiv Detail & Related papers (2024-06-07T03:13:46Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - MeViS: A Large-scale Benchmark for Video Segmentation with Motion
Expressions [93.35942025232943]
We propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments.
The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms.
arXiv Detail & Related papers (2023-08-16T17:58:34Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
This paper addresses the task of unsupervised video multi-object segmentation.
We introduce a novel approach for more accurate and efficient unseen-temporal segmentation.
We evaluate the proposed approach on DAVIS$_17$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
arXiv Detail & Related papers (2021-04-10T14:39:44Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.