Towards Trustworthy AI: Secure Deepfake Detection using CNNs and Zero-Knowledge Proofs
- URL: http://arxiv.org/abs/2507.17010v1
- Date: Tue, 22 Jul 2025 20:47:46 GMT
- Title: Towards Trustworthy AI: Secure Deepfake Detection using CNNs and Zero-Knowledge Proofs
- Authors: H M Mohaimanul Islam, Huynh Q. N. Vo, Aditya Rane,
- Abstract summary: TrustDefender is a framework that detects deepfake imagery in real-time extended reality (XR) streams.<n>Our work establishes a foundation for reliable AI in immersive and privacy-sensitive applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of synthetic media, deepfake manipulations pose a significant threat to information integrity. To address this challenge, we propose TrustDefender, a two-stage framework comprising (i) a lightweight convolutional neural network (CNN) that detects deepfake imagery in real-time extended reality (XR) streams, and (ii) an integrated succinct zero-knowledge proof (ZKP) protocol that validates detection results without disclosing raw user data. Our design addresses both the computational constraints of XR platforms while adhering to the stringent privacy requirements in sensitive settings. Experimental evaluations on multiple benchmark deepfake datasets demonstrate that TrustDefender achieves 95.3% detection accuracy, coupled with efficient proof generation underpinned by rigorous cryptography, ensuring seamless integration with high-performance artificial intelligence (AI) systems. By fusing advanced computer vision models with provable security mechanisms, our work establishes a foundation for reliable AI in immersive and privacy-sensitive applications.
Related papers
- DICOM De-Identification via Hybrid AI and Rule-Based Framework for Scalable, Uncertainty-Aware Redaction [0.0]
This paper presents a hybrid de-identification framework that combines rule-based and AI-driven techniques.<n>Our solution addresses critical challenges in medical data de-identification and supports the secure, ethical, and trustworthy release of imaging data for research.
arXiv Detail & Related papers (2025-07-31T17:19:38Z) - Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images [29.349824933680956]
We present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems.<n>Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models.<n>In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies.
arXiv Detail & Related papers (2025-07-30T12:16:27Z) - Unmasking Synthetic Realities in Generative AI: A Comprehensive Review of Adversarially Robust Deepfake Detection Systems [4.359154048799454]
Deepfake proliferation-synthetic media poses challenges to digital security, misinformation mitigation, and identity preservation.<n>This systematic review evaluates state-of-the-art deepfake detection methodologies, emphasizing reproducible implementations for transparency and validation.<n>We delineate two core paradigms: (1) detection of fully synthetic media leveraging statistical anomalies and hierarchical feature extraction, and (2) localization of manipulated regions within authentic content employing multi-modal cues such as visual artifacts and temporal inconsistencies.
arXiv Detail & Related papers (2025-07-24T22:05:52Z) - Enhancing Deepfake Detection using SE Block Attention with CNN [5.7494612007431805]
We propose a lightweight convolution neural network (CNN) with squeeze and excitation block attention (SE) for Deepfake detection.<n>The model achieved an overall classification accuracy of 94.14% and AUC-ROC score of 0.985 on the Style GAN dataset.<n>Our proposed approach presents a promising avenue for combating the Deepfake challenge with minimal computational resources.
arXiv Detail & Related papers (2025-06-12T13:29:26Z) - RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors [57.81012948133832]
We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples.<n>Our methodology generates adversarial images that transfer with a high success rate to unseen detectors.<n>Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples.
arXiv Detail & Related papers (2025-06-04T14:16:00Z) - FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
We propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics.<n>FakeScope identifies AI-synthetic images with high accuracy and provides rich, interpretable, and query-driven forensic insights.<n>FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios.
arXiv Detail & Related papers (2025-03-31T16:12:48Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)<n>By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.<n>We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - Towards Secure and Private AI: A Framework for Decentralized Inference [14.526663289437584]
Large multimodal foundational models present challenges in scalability, reliability, and potential misuse.<n>Decentralized systems offer a solution by distributing workload and mitigating central points of failure.<n>We address these challenges with a comprehensive framework designed for responsible AI development.
arXiv Detail & Related papers (2024-07-28T05:09:17Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
arXiv Detail & Related papers (2024-03-29T19:09:08Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
Training a high-performance deep neural network requires large amounts of data and computational resources.
We propose a safe and robust backdoor-based watermark injection technique.
We induce random perturbation of model parameters during watermark injection to defend against common watermark removal attacks.
arXiv Detail & Related papers (2023-09-04T19:58:35Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Towards a Safety Case for Hardware Fault Tolerance in Convolutional
Neural Networks Using Activation Range Supervision [1.7968112116887602]
Convolutional neural networks (CNNs) have become an established part of numerous safety-critical computer vision applications.
We build a prototypical safety case for CNNs by demonstrating that range supervision represents a highly reliable fault detector.
We explore novel, non-uniform range restriction methods that effectively suppress the probability of silent data corruptions and uncorrectable errors.
arXiv Detail & Related papers (2021-08-16T11:13:55Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.