On the Feasibility of Quantum Unit Testing
- URL: http://arxiv.org/abs/2507.17235v1
- Date: Wed, 23 Jul 2025 06:05:24 GMT
- Title: On the Feasibility of Quantum Unit Testing
- Authors: Andriy Miranskyy, José Campos, Anila Mjeda, Lei Zhang, Ignacio García Rodríguez de Guzmán,
- Abstract summary: This work presents a study on quantum-centric unit tests, comparing traditional statistical approaches with tests specifically designed for quantum circuits.<n>We investigate (a) each test's ability to detect subtle discrepancies between the expected and actual states of a quantum circuit, and (b) the number of measurements required to achieve high reliability.<n>The results demonstrate that quantum-centric tests provide clear advantages in terms of precision and efficiency, reducing both false positives and false negatives compared to statistical tests.
- Score: 7.96685560797073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing complexity of quantum software presents significant challenges for software verification and validation, particularly in the context of unit testing. This work presents a comprehensive study on quantum-centric unit tests, comparing traditional statistical approaches with tests specifically designed for quantum circuits. These include tests that run only on a classical computer, such as the Statevector test, as well as those executable on quantum hardware, such as the Swap test and the novel Inverse test. Through an empirical study and detailed analysis on 1,796,880 mutated quantum circuits, we investigate (a) each test's ability to detect subtle discrepancies between the expected and actual states of a quantum circuit, and (b) the number of measurements required to achieve high reliability. The results demonstrate that quantum-centric tests, particularly the Statevector test and the Inverse test, provide clear advantages in terms of precision and efficiency, reducing both false positives and false negatives compared to statistical tests. This work contributes to the development of more robust and scalable strategies for testing quantum software, supporting the future adoption of fault-tolerant quantum computers and promoting more reliable practices in quantum software engineering.
Related papers
- Context-Aware Unit Testing for Quantum Subroutines [14.117812847408523]
Testing quantum software presents unique challenges due to the non-deterministic nature of quantum information, the high dimensionality of the underlying Hilbert space, complex hardware noise, and the inherent non-local properties of quantum systems.<n>We propose incorporating context-awareness into the testing process to address the computational complexity associated with unit testing in quantum systems.
arXiv Detail & Related papers (2025-06-12T04:58:56Z) - QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems [45.18451374144537]
Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration.
QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing.
We propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems.
arXiv Detail & Related papers (2024-02-20T12:11:28Z) - Testing Multi-Subroutine Quantum Programs: From Unit Testing to Integration Testing [2.8611507672161265]
This paper addresses the specific testing requirements of multi-subroutine quantum programs.
We focus on testing criteria and techniques based on the whole testing process perspective.
We conduct comprehensive testing on typical quantum subroutines, including diverse mutants and randomized inputs.
arXiv Detail & Related papers (2023-06-30T05:31:56Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Experimental Implementation of an Efficient Test of Quantumness [49.588006756321704]
A test of quantumness is a protocol where a classical user issues challenges to a quantum device to determine if it exhibits non-classical behavior.
Recent attempts to implement such tests on current quantum computers rely on either interactive challenges with efficient verification, or non-interactive challenges with inefficient (exponential time) verification.
arXiv Detail & Related papers (2022-09-28T18:00:04Z) - Swap Test-based Characterization of Quantum Processes in Universal
Quantum Computers [0.0]
Unreliable quantum processes in universal quantum computers still represent one of the the greatest challenges to be overcome.
In this article we verify whether a tool called Swap Test is able to identify decoherence to a quantum system.
arXiv Detail & Related papers (2022-08-04T21:31:49Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Automatic Test Pattern Generation for Robust Quantum Circuit Testing [8.860149267706221]
We introduce the stabilizer projector decomposition (SPD) for representing the quantum test pattern.
We construct the test application (i.e., state preparation and measurement) using Clifford-only circuits.
We develop an SPD generation algorithm, as well as several acceleration techniques which can exploit both locality and sparsity in generating SPDs.
arXiv Detail & Related papers (2022-02-22T07:06:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.