QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems
- URL: http://arxiv.org/abs/2402.12950v2
- Date: Mon, 26 Aug 2024 08:02:40 GMT
- Title: QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems
- Authors: Jinjing Shi, Zimeng Xiao, Heyuan Shi, Yu Jiang, Xuelong Li,
- Abstract summary: Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration.
QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing.
We propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems.
- Score: 45.18451374144537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration. Recently, QNN systems have been found to manifest robustness issues similar to classical DL systems. There is an urgent need for ways to test their correctness and security. However, QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing. These challenges include the inapplicability of traditional quantum software testing methods to QNN systems due to differences in programming paradigms and decision logic representations, the dependence of quantum test sample generation on perturbation operators, and the absence of effective information in quantum neurons. In this paper, we propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems. We design a quantum entanglement adequacy criterion to quantify the entanglement acquired by the input quantum states from the QNN system, along with two similarity metrics to measure the proximity of generated quantum adversarial examples to the original inputs. Subsequently, QuanTest formulates the problem of generating test inputs that maximize the quantum entanglement adequacy and capture incorrect behaviors of the QNN system as a joint optimization problem and solves it in a gradient-based manner to generate quantum adversarial examples. results demonstrate that QuanTest possesses the capability to capture erroneous behaviors in QNN systems. The entanglement-guided approach proves effective in adversarial testing, generating more adversarial examples.
Related papers
- A Coverage-Guided Testing Framework for Quantum Neural Networks [1.7101498519540597]
Quantum Neural Networks (QNNs) combine quantum computing and neural networks to improve machine learning models.
We propose QCov, a set of test coverage criteria specifically designed for QNNs to systematically evaluate QNN state exploration.
arXiv Detail & Related papers (2024-11-03T08:07:27Z) - Quantum Network Tomography [7.788995634397122]
We provide an overview of Quantum Network Tomography (QNT) and its initial results for characterizing quantum star networks.
We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels.
We analyze the performance of our estimators numerically by assessing the Quantum Cramer-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime.
arXiv Detail & Related papers (2024-05-18T21:24:52Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
Quantum neural networks based on parametrized quantum circuits, measurements and feed-forward can process large amounts of quantum data.
We construct quantum convolutional neural networks (QCNNs) that can recognize different symmetry-protected topological phases.
We show that the QCNN output is robust against symmetry-breaking errors below a threshold error probability.
arXiv Detail & Related papers (2023-07-07T16:47:02Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.