Tab-MIA: A Benchmark Dataset for Membership Inference Attacks on Tabular Data in LLMs
- URL: http://arxiv.org/abs/2507.17259v1
- Date: Wed, 23 Jul 2025 06:56:34 GMT
- Title: Tab-MIA: A Benchmark Dataset for Membership Inference Attacks on Tabular Data in LLMs
- Authors: Eyal German, Sagiv Antebi, Daniel Samira, Asaf Shabtai, Yuval Elovici,
- Abstract summary: We present Tab-MIA, a benchmark dataset for evaluating MIAs on structured data in large language models.<n>We analyze the memorization behavior of pretrained LLMs on structured data derived from Wikipedia tables.
- Score: 24.312198733476063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly trained on tabular data, which, unlike unstructured text, often contains personally identifiable information (PII) in a highly structured and explicit format. As a result, privacy risks arise, since sensitive records can be inadvertently retained by the model and exposed through data extraction or membership inference attacks (MIAs). While existing MIA methods primarily target textual content, their efficacy and threat implications may differ when applied to structured data, due to its limited content, diverse data types, unique value distributions, and column-level semantics. In this paper, we present Tab-MIA, a benchmark dataset for evaluating MIAs on tabular data in LLMs and demonstrate how it can be used. Tab-MIA comprises five data collections, each represented in six different encoding formats. Using our Tab-MIA benchmark, we conduct the first evaluation of state-of-the-art MIA methods on LLMs finetuned with tabular data across multiple encoding formats. In the evaluation, we analyze the memorization behavior of pretrained LLMs on structured data derived from Wikipedia tables. Our findings show that LLMs memorize tabular data in ways that vary across encoding formats, making them susceptible to extraction via MIAs. Even when fine-tuned for as few as three epochs, models exhibit high vulnerability, with AUROC scores approaching 90% in most cases. Tab-MIA enables systematic evaluation of these risks and provides a foundation for developing privacy-preserving methods for tabular data in LLMs.
Related papers
- Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
We introduce a multimodal unlearning benchmark, UnLOK-VQA, and an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs.<n>Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states.
arXiv Detail & Related papers (2025-05-01T01:54:00Z) - Scalable In-Context Learning on Tabular Data via Retrieval-Augmented Large Language Models [15.603556124006479]
We propose retrieval-augmented language models for scalable TabICL.<n>Our approach incorporates a customized retrieval module, combined with retrieval-guided instruction-tuning for LLMs.<n>This enables LLMs to effectively leverage larger datasets, achieving significantly improved performance across 69 widely recognized datasets.
arXiv Detail & Related papers (2025-02-05T13:16:41Z) - Tag&Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack [26.083244046813512]
Large language models (LLMs) have become essential digital task assistance tools.<n>Recent studies on the detection of pretraining data in LLMs have primarily focused on sentence-level or paragraph-level membership inference attacks.<n>We propose Tag&Tab, a novel approach for detecting data that has been used as part of the LLM pretraining.
arXiv Detail & Related papers (2025-01-14T21:55:37Z) - Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Models [73.94175015918059]
We propose a dataset-level membership inference method based on Self-Comparison.
Our method does not require access to ground-truth member data or non-member data in identical distribution.
arXiv Detail & Related papers (2024-10-16T23:05:59Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
We introduce EM-MIA, a novel membership inference method that iteratively refines membership scores and prefix scores via an expectation-maximization algorithm.<n> EM-MIA achieves state-of-the-art results on WikiMIA.
arXiv Detail & Related papers (2024-10-10T03:31:16Z) - Evaluating LLM-based Personal Information Extraction and Countermeasures [63.91918057570824]
Large language model (LLM) based personal information extraction can be benchmarked.<n>LLM can be misused by attackers to accurately extract various personal information from personal profiles.<n> prompt injection can defend against strong LLM-based attacks, reducing the attack to less effective traditional ones.
arXiv Detail & Related papers (2024-08-14T04:49:30Z) - HARMONIC: Harnessing LLMs for Tabular Data Synthesis and Privacy Protection [44.225151701532454]
In this paper, we introduce a new framework HARMONIC for tabular data generation and evaluation.
Our framework achieves equivalent performance to existing methods with better privacy, which also demonstrates our evaluation framework for the effectiveness of synthetic data and privacy risks.
arXiv Detail & Related papers (2024-08-06T03:21:13Z) - TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios [51.66718740300016]
TableLLM is a robust large language model (LLM) with 8 billion parameters.<n>TableLLM is purpose-built for proficiently handling data manipulation tasks.<n>We have released the model checkpoint, source code, benchmarks, and a web application for user interaction.
arXiv Detail & Related papers (2024-03-28T11:21:12Z) - Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data [21.912611415307644]
Large Language Models (LLMs) can be applied to a diverse set of tasks, but the critical issues of data contamination and memorization are often glossed over.
We introduce a variety of different techniques to assess the degrees of contamination, including statistical tests for conditional distribution modeling and four tests that identify memorization.
arXiv Detail & Related papers (2024-03-11T12:07:13Z) - Rethinking Pre-Training in Tabular Data: A Neighborhood Embedding Perspective [71.45945607871715]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)<n>The core idea is to embed data instances into a shared feature space, where each instance is represented by its distance to a fixed number of nearest neighbors and their labels.<n>Extensive experiments on 101 datasets confirm TabPTM's effectiveness in both classification and regression tasks, with and without fine-tuning.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.