A Virtual Quantum Network Prototype for Open Access
- URL: http://arxiv.org/abs/2507.17495v1
- Date: Wed, 23 Jul 2025 13:24:34 GMT
- Title: A Virtual Quantum Network Prototype for Open Access
- Authors: Raj Kamleshkumar Madhu, Visuttha Manthamkarn, Zheshen Zhang, Jianqing Liu,
- Abstract summary: Current quantum network systems remain limited in scale, are highly application-specific, and lack a clear road map for global expansion.<n>This paper proposes an open-access software-based quantum network virtualization platform to facilitate scalable and remote interaction with quantum hardware.<n>System is built around a cloud application that virtualizes the core hardware components of a lab-scale quantum network testbed.
- Score: 2.5972252486036904
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rise of quantum networks has revolutionized domains such as communication, sensing, and cybersecurity. Despite this progress, current quantum network systems remain limited in scale, are highly application-specific (e.g., for quantum key distribution), and lack a clear road map for global expansion. These limitations are largely driven by a shortage of skilled professionals, limited accessibility to quantum infrastructure, and the high complexity and cost associated with building and operating quantum hardware. To address these challenges, this paper proposes an open-access software-based quantum network virtualization platform designed to facilitate scalable and remote interaction with quantum hardware. The system is built around a cloud application that virtualizes the core hardware components of a lab-scale quantum network testbed, including the time tagger and optical switch, enabling users to perform coincidence counts of the photon entanglements while ensuring fair resource allocation. The fairness is ensured by employing the Hungarian Algorithm to allocate nearly equal effective entanglement rates among users. We provide implementation details and performance analysis from the perspectives of hardware, software, and cloud platform, which demonstrates the functionality and efficiency of the developed prototype.
Related papers
- SeQUeNCe GUI: An Extensible User Interface for Discrete Event Quantum Network Simulations [55.2480439325792]
SeQUeNCe is an open source simulator of quantum network communication.<n>We implement a graphical user interface which maintains the core principles of SeQUeNCe.
arXiv Detail & Related papers (2025-01-15T19:36:09Z) - How to Build a Quantum Supercomputer: Scaling from Hundreds to Millions of Qubits [3.970891204847277]
Small-scale demonstrations have become possible for quantum algorithmic primitives on hundreds of physical qubits.<n>We show how the road to scaling could be paved by adopting existing semiconductor technology to build much higher-quality qubits.<n>We argue that, to tackle industry-scale classical optimization and machine learning problems, heterogeneous quantum-probabilistic computing with custom-designed accelerators should be considered.
arXiv Detail & Related papers (2024-11-15T18:22:46Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Practical limitations on robustness and scalability of quantum Internet [0.7499722271664144]
We study the limitations on the scaling and robustness of quantum Internet.
We present practical bottlenecks for secure communication, delegated computing, and resource distribution among end nodes.
For some examples of quantum networks, we present algorithms to perform different quantum network tasks of interest.
arXiv Detail & Related papers (2023-08-24T12:32:48Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Internet: The Future of Internetworking [16.313110394211154]
The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
arXiv Detail & Related papers (2023-04-30T23:17:47Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
We develop a framework for quantum resource estimation, abstracting the layers of the stack, to estimate resources required for large-scale quantum applications.
We assess three scaled quantum applications and find that hundreds of thousands to millions of physical qubits are needed to achieve practical quantum advantage.
A goal of our work is to accelerate progress towards practical quantum advantage by enabling the broader community to explore design choices across the stack.
arXiv Detail & Related papers (2022-11-14T18:50:27Z) - Experimental demonstration of entanglement delivery using a quantum
network stack [1.3684924922685724]
We experimentally demonstrate, using remote solid-state quantum network nodes, a link layer and a physical layer protocol for entanglement-based quantum networks.
Results mark a clear transition from physics experiments to quantum communication systems.
arXiv Detail & Related papers (2021-11-22T16:39:33Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Designing a Quantum Network Protocol [0.0]
We present a quantum network protocol designed to enable end-to-end quantum communication.
One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information.
We show that the protocol is able to deliver its service even in the face of significant losses due to decoherence.
arXiv Detail & Related papers (2020-10-06T09:41:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.