論文の概要: Explainable Graph Neural Networks via Structural Externalities
- arxiv url: http://arxiv.org/abs/2507.17848v1
- Date: Sat, 19 Jul 2025 07:36:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:42.337744
- Title: Explainable Graph Neural Networks via Structural Externalities
- Title(参考訳): 構造外部性による説明可能なグラフニューラルネットワーク
- Authors: Lijun Wu, Dong Hao, Zhiyi Fan,
- Abstract要約: GraphEXTはグラフニューラルネットワーク(GNN)のための説明可能性フレームワーク
グラフノードを連立に分割し、元のグラフを独立したサブグラフに分解する。
ノード間の相互作用とGNN予測に対する構造変化の影響に重点を置いている。
- 参考スコア(独自算出の注目度): 26.560662295366548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved outstanding performance across a wide range of graph-related tasks. However, their "black-box" nature poses significant challenges to their explainability, and existing methods often fail to effectively capture the intricate interaction patterns among nodes within the network. In this work, we propose a novel explainability framework, GraphEXT, which leverages cooperative game theory and the concept of social externalities. GraphEXT partitions graph nodes into coalitions, decomposing the original graph into independent subgraphs. By integrating graph structure as an externality and incorporating the Shapley value under externalities, GraphEXT quantifies node importance through their marginal contributions to GNN predictions as the nodes transition between coalitions. Unlike traditional Shapley value-based methods that primarily focus on node attributes, our GraphEXT places greater emphasis on the interactions among nodes and the impact of structural changes on GNN predictions. Experimental studies on both synthetic and real-world datasets show that GraphEXT outperforms existing baseline methods in terms of fidelity across diverse GNN architectures , significantly enhancing the explainability of GNN models.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、幅広いグラフ関連タスクで優れたパフォーマンスを実現している。
しかしながら、それらの"ブラックボックス"の性質は、その説明可能性に大きな課題をもたらし、既存のメソッドは、ネットワーク内のノード間の複雑な相互作用パターンを効果的にキャプチャできないことが多い。
本研究では,協調ゲーム理論と社会的外部性の概念を活用する新しい説明可能性フレームワークであるGraphEXTを提案する。
GraphEXTはグラフノードを連立に分割し、元のグラフを独立したサブグラフに分解する。
グラフ構造を外部性として統合し、Shapley値を外部性に組み込むことで、GraphEXTは連立間のノード遷移としてGNN予測への限界貢献を通じてノードの重要性を定量化する。
ノード属性に主にフォーカスする従来のShapley値ベースのメソッドとは異なり、GraphEXTではノード間のインタラクションとGNN予測に対する構造的変化の影響に重点を置いています。
合成と実世界の両方のデータセットに関する実験的研究により、GraphEXTは様々なGNNアーキテクチャにおける忠実度の観点から既存のベースライン手法よりも優れており、GNNモデルの説明可能性を大幅に向上していることが示された。
関連論文リスト
- Probability Passing for Graph Neural Networks: Graph Structure and Representations Joint Learning [8.392545965667288]
グラフニューラルネットワーク(GNN)は、幅広い領域にわたる非ユークリッドデータの解析において顕著な成功を収めている。
この問題を解決するために、ノード特徴の類似性やエッジ確率を計算することにより、タスク固有の潜在構造を推論するために、遅延グラフ推論(LGI)を提案する。
本稿では,隣接ノードのエッジ確率を集約することにより,生成したグラフ構造を洗練するためのProbability Passingという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-15T13:01:47Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
GTGANは、グラフ制約のある住宅生成タスクにおいて、エンドツーエンドで効率的なグラフノード関係を学習する。
論文 参考訳(メタデータ) (2023-03-14T20:35:45Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Curvature Graph Neural Network [8.477559786537919]
離散グラフ曲率(リッチ曲率)を導入し、対ノードの構造接続の強度を定量化する。
GNNの適応的局所性能力を効果的に向上する曲線グラフニューラルネットワーク(CGNN)を提案する。
合成データセットの実験結果から,CGNNはトポロジ構造情報を効果的に活用していることがわかった。
論文 参考訳(メタデータ) (2021-06-30T00:56:03Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。