On-Chip Laser-Driven Free-Electron Spin Polarizer
- URL: http://arxiv.org/abs/2507.17993v1
- Date: Wed, 23 Jul 2025 23:56:28 GMT
- Title: On-Chip Laser-Driven Free-Electron Spin Polarizer
- Authors: Clarisse Woodahl, Melanie Murillo, Charles Roques-Carmes, Aviv Karnieli, David A. B. Miller, Olav Solgaard,
- Abstract summary: Spin-polarized electron beam sources enable studies of spin-dependent electric and magnetic effects at the nanoscale.<n>We propose a method of creating spin-polarized electrons on an integrated photonics chip by laser driven nanophotonic fields.
- Score: 0.21697444224751963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin-polarized electron beam sources enable studies of spin-dependent electric and magnetic effects at the nanoscale. We propose a method of creating spin-polarized electrons on an integrated photonics chip by laser driven nanophotonic fields. A two-stage interaction separated by a free space drift length is proposed, where the first stage and drift length introduces spin-dependent characteristics into the probability distribution of the electron wavefunction. The second stage uses an adjusted optical near-field to rotate the spin states utilizing the spin-dependent wavepacket distribution to produce electrons with high ensemble average spin expectation values. This platform provides an integrated and compact method to generate spin-polarized electrons, implementable with millimeter scale chips and table-top lasers.
Related papers
- Sensing Spin Systems with a Transmission Electron Microscope [0.0]
We present a novel method that combines spin resonance spectroscopy with transmission electron microscopy (TEM)<n>Our approach utilizes continuous wave MW excitation at GHz frequencies, while employing the free-space electron beam as a signal receiver to sense spin precession.<n>Spin state polarization is achieved via the magnetic field of the TEM's polepiece, while a custom-designed microresonator integrated into a TEM sample holder drives spin transitions and modulates the electron beam.
arXiv Detail & Related papers (2025-03-09T20:32:54Z) - Ultrafast Plasmonic Rotors for Electron Beams [0.0]
We show that the circulation direction of plasmonic fields plays a crucial role in modulating electron dynamics.<n>These findings highlight the potential of plasmon rotors for shaping electron wavepackets, offering promising applications in ultrafast microscopy, spectroscopy, and quantum information processing.
arXiv Detail & Related papers (2025-02-24T14:15:58Z) - Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth [43.06643088952006]
electron spin of a color center in diamond mediates interaction between a long-lived nuclear spin and a photon.
We demonstrate strong coupling of its electron spin, while the electron spin's decoherence rate remained below 1 MHz.
We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.
arXiv Detail & Related papers (2023-12-14T14:17:35Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Floquet-engineered chiral-induced spin selectivity [0.0]
We show that CISS can be observed in achiral systems driven by an external circularly polarized laser field in the framework of Floquet engineering.
To obtain a wider range of energies for large spin polarization, a combination of chiral molecules and light-matter interactions is considered.
arXiv Detail & Related papers (2023-02-20T07:06:17Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Mapping single electron spins with magnetic tomography [0.0]
We show a method based on rotating an external magnetic field to identify the precise location of single electron spins in the vicinity of a quantum spin sensor.
We show that the method can be used to locate electron spins with nanometer precision up to 10,nm away from the sensor.
arXiv Detail & Related papers (2022-03-09T17:14:05Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Electrons in intense laser fields with local phase, polarization, and
skyrmionic textures [0.0]
We derive expressions for the wave function of an unbound electron subject to a structured, intense laser field.
It is also shown that photoelectrons can be accelerated or momentum when moving through a focused, intense laser field.
arXiv Detail & Related papers (2020-11-25T11:52:44Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.