Indirect multiphoton scattering between light and bulk plasmons via ultrafast free electrons
- URL: http://arxiv.org/abs/2507.18091v1
- Date: Thu, 24 Jul 2025 04:59:12 GMT
- Title: Indirect multiphoton scattering between light and bulk plasmons via ultrafast free electrons
- Authors: Ruoyu Chen, Jun Li, Qiaofei Pan, Dingguo Zheng, Bin Zhang, Ye Tian, Jianqi Li, Huaixin Yang, Yiming Pan,
- Abstract summary: We show that ultrafast free electrons can coherently mediate an interaction between electromagnetic fields and BPs at the nanoscale.<n>Results show that femtosecond-driven, ultrafast electrons provide a viable route to modulate and even control bulk plasmon excitations in a volume.
- Score: 5.303354089191869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient coupling between light and bulk plasmons (BPs) remains a central challenge because of their inherent mode mismatch, limited penetration depth, and pronounced resonant energy mismatch between visible-range photons and BPs. In this work, we demonstrate that ultrafast free electrons can coherently mediate an interaction between electromagnetic fields and BPs at the nanoscale. An electron pulse emitted from the photocathode of ultrafast transmission electron microscope, functions as a quantum intermediary that is capable of simultaneously interacting with the laser field by multiphoton processes and BPs by perturbative scattering. Electron energy-loss spectroscopy can capture this indirect interaction, the final electron energy distribution encodes both quantum pathways arising from distinct combinations of multiphoton absorption and emission and BP scattering events. Interference among these pathways gives rise to characteristic spectral modulations, directly revealing the exchange of energy and information between photons and BPs via the electron delivery. Our results show that femtosecond-driven, ultrafast electrons provide a viable route to modulate and even control bulk plasmon excitations in a volume, thereby extending beyond the conventional nanoplasmonics schemes on manipulating surface plasmons by light. This indirect light-BP interaction paves the promising way for exploring fundamental light-matter interaction at ultrafast and nanometer scales.
Related papers
- Engineering giant transmon molecules as mediators of conditional two-photon gates [44.99833362998488]
We show how to use an array of non-locally coupled transmon "molecules" to engineer a passive photonic controlled gate for waveguide photons.<n>Our work opens the use of giant atoms as key elements of microwave photonic quantum computing devices.
arXiv Detail & Related papers (2025-07-07T18:03:59Z) - Light-induced Pairing Instability of Ultrafast Electron Beams with Space Charge Interactions [4.9151602445945555]
We introduce a photon-induced pairing mechanism that generates a net attractive force between two electrons.<n>We demonstrate that the effective interaction via single-photon exchange among PINEM electrons can suppress the inherent repulsive Coulomb interaction.<n>We also analyze the dynamics of the free-electron pairs in a bunched beam, underscoring the potential to facilitate a phase-coherent condensate of electrons.
arXiv Detail & Related papers (2025-07-01T15:32:39Z) - Free-Space Optical Modulation of Free Electrons in the Continuous-Wave Regime [0.0]
coherent interaction between free electrons and optical fields can produce free-electron compression.<n>We introduce a practical scheme to achieve a large temporal compression of continuous electron beams without involving optical scattering by material structures.
arXiv Detail & Related papers (2024-12-04T15:49:03Z) - Structured free-space optical fields for transverse and longitudinal control of electron matter waves [0.0]
Controlling free-electron momentum states is of high interest in electron microscopy to achieve momentum and energy resolved probing and manipulation of physical systems.
Here, we demonstrate both longitudinal and transverse phase control of a slow electron wavepacket by extending the Kapitza-Dirac effect to spatially-structured pulsed laser beams.
The interaction reveals the formation of distinct electron transverse momentum orders, each demonstrating a comb-like electron energy spectrum.
arXiv Detail & Related papers (2024-04-05T16:00:39Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Universal pair-polaritons in a strongly interacting Fermi gas [0.0]
We report on experiments using molecular transitions in a strongly interacting Fermi gas, directly coupling cavity photons to pairs of atoms.
The dependence of the pair-polariton spectrum on interatomic interactions is universal, independent of the transition used.
This represents a magnification of many-body effects by two orders of magnitude in energy.
arXiv Detail & Related papers (2021-03-03T15:06:06Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Optical Excitations with Electron Beams: Challenges and Opportunities [0.0]
We provide an overview of photonics research based on free electrons, supplemented by original theoretical insights.
We show that the excitation probability by a single electron is independent of its wave function, apart from a classical average over the transverse beam density profile.
We conclude with perspectives on various exciting directions for disruptive approaches to non-invasive spectroscopy and microscopy.
arXiv Detail & Related papers (2020-10-26T12:08:32Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.