論文の概要: A New Pair of GloVes
- arxiv url: http://arxiv.org/abs/2507.18103v1
- Date: Thu, 24 Jul 2025 05:29:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.013727
- Title: A New Pair of GloVes
- Title(参考訳): グローブの新たなペア
- Authors: Riley Carlson, John Bauer, Christopher D. Manning,
- Abstract要約: 本報告では,2024年の英語GloVe(Global Vectors for Word Representation)モデルについて述べる。
2014年に開発されたオリジナルのGloVeモデルは広く使われ、有用であることが分かり、言語と世界は進化し続けています。
われわれはWikipedia、Gigaword、およびDolmaのサブセットを使って単語埋め込みの2つのセットを訓練した。
語彙比較、直接テスト、NERタスクによる評価は、2024ベクターが新しい文化的、言語学的に関連のある単語を取り入れ、類似性や類似性などの構造的タスクを相補的に実行し、近年の時間的に改善された性能を示すことを示している。
- 参考スコア(独自算出の注目度): 30.76903694425121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report documents, describes, and evaluates new 2024 English GloVe (Global Vectors for Word Representation) models. While the original GloVe models built in 2014 have been widely used and found useful, languages and the world continue to evolve and we thought that current usage could benefit from updated models. Moreover, the 2014 models were not carefully documented as to the exact data versions and preprocessing that were used, and we rectify this by documenting these new models. We trained two sets of word embeddings using Wikipedia, Gigaword, and a subset of Dolma. Evaluation through vocabulary comparison, direct testing, and NER tasks shows that the 2024 vectors incorporate new culturally and linguistically relevant words, perform comparably on structural tasks like analogy and similarity, and demonstrate improved performance on recent, temporally dependent NER datasets such as non-Western newswire data.
- Abstract(参考訳): 本報告では,2024年の英語GloVe(Global Vectors for Word Representation)モデルについて述べる。
2014年に開発されたオリジナルのGloVeモデルは広く使われ、有用なものとなっているが、言語と世界は進化を続けている。
さらに、2014年モデルは、使用した正確なデータバージョンと前処理に関して慎重に文書化されておらず、これらの新しいモデルを文書化することによってこれを修正しています。
われわれはWikipedia、Gigaword、およびDolmaのサブセットを使って単語埋め込みの2つのセットを訓練した。
語彙比較、直接テスト、NERタスクによる評価により、2024ベクターは、新しい文化的、言語学的に関連づけられた単語を取り入れ、類似性や類似性といった構造的タスクを相補的に実行し、非西洋のニュースワイヤデータのような最近の時間依存NERデータセットの性能向上を示す。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Improving Aspect-Based Sentiment with End-to-End Semantic Role Labeling
Model [6.85316573653194]
本稿では,Aspect-Based Sentiment Analysis(ABSA)の性能向上を目的とした一連のアプローチを提案する。
本稿では,トランスフォーマーの隠蔽状態における構造的意味情報の大部分を効果的にキャプチャする,エンドツーエンドのセマンティックロールラベルモデルを提案する。
ELECTRA小モデルを用いて,提案したモデルを英語とチェコ語で評価した。
論文 参考訳(メタデータ) (2023-07-27T11:28:16Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
本稿では,従来の言語モデルと最近の言語モデルの両方を用いた語彙置換手法の大規模比較研究を行う。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによるすでに競合する結果がさらに大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-07T16:16:19Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
現在の言語モデルは高品質なテキストを生成することができる。
彼らは、これまで見たテキストを単にコピーしているか、それとも一般化可能な言語的抽象化を学んだのか?
本稿では、生成したテキストの新規性を評価するための分析スイートであるRAVENを紹介する。
論文 参考訳(メタデータ) (2021-11-18T04:07:09Z) - CoreLM: Coreference-aware Language Model Fine-Tuning [0.0]
我々は、現在の事前学習言語モデルのアーキテクチャを拡張した、CoreLMというファインチューニングフレームワークを提案する。
我々は、モデルの文脈空間外で利用可能な情報を作成し、計算コストのごく一部について、よりよい言語モデルをもたらす。
提案モデルでは, GPT2 と比較した場合, GUMBY と LAMBDADA のデータセットのパープレキシティが低くなる。
論文 参考訳(メタデータ) (2021-11-04T08:44:31Z) - No News is Good News: A Critique of the One Billion Word Benchmark [4.396860522241306]
10億ワードベンチマークは、WMT 2011 News Crawlから派生したデータセットである。
毎年分割されたCommon Crawlのウェブスクラップにのみモデルをトレーニングし、分散シフトによる時間経過とともに、このタスクに悪影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2021-10-25T02:41:27Z) - Introducing various Semantic Models for Amharic: Experimentation and
Evaluation with multiple Tasks and Datasets [19.855120632909124]
我々はAmharicの異なるセマンティックモデルを導入する。
モデルは word2Vec 埋め込み、分散シソーラス (DT)、コンテキスト埋め込み、DT 埋め込みを使って構築される。
新たに訓練されたモデルは、事前訓練された多言語モデルよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-11-02T17:48:25Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - Cascaded Models for Better Fine-Grained Named Entity Recognition [10.03287972980716]
細粒度NERをラベル付けするためのケースドアプローチを新たにリリースした細粒度NERデータセットに適用する。
完全きめ細かな型で構築された直感的なモデルと比較して,20F1絶対値で性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-09-15T18:41:29Z) - Towards Making the Most of Context in Neural Machine Translation [112.9845226123306]
我々は、これまでの研究がグローバルな文脈をはっきりと利用しなかったと論じている。
本研究では,各文の局所的文脈を意図的にモデル化する文書レベルNMTフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T03:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。