論文の概要: NoCode-bench: A Benchmark for Evaluating Natural Language-Driven Feature Addition
- arxiv url: http://arxiv.org/abs/2507.18130v2
- Date: Fri, 01 Aug 2025 00:25:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 14:06:53.576241
- Title: NoCode-bench: A Benchmark for Evaluating Natural Language-Driven Feature Addition
- Title(参考訳): NoCode-bench: 自然言語駆動の機能追加を評価するベンチマーク
- Authors: Le Deng, Zhonghao Jiang, Jialun Cao, Michael Pradel, Zhongxin Liu,
- Abstract要約: この研究は、現実世界のNL駆動機能追加タスクで大きな言語モデル(LLM)を評価するために設計されたベンチマークであるNoCode-benchを紹介する。
高品質で人間認証された114のインスタンスのサブセット、NoCode-bench Verifiedは信頼性の高い評価を保証する。
我々の実験によると、トークンの使用率が高いにもかかわらず、最高のLCMはタスクの成功率を15.79%に抑え、ファイル間の編集、理解、ツール呼び出しの課題を強調している。
- 参考スコア(独自算出の注目度): 16.134058143793304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural language-driven no-code development allows users to specify software functionality using natural language (NL) instead of editing source code, promising increased productivity and democratized development. Large language models (LLMs) show potential in enabling this paradigm. In this context, software documentation acts as an NL specification for functionality. This work introduces NoCode-bench, a benchmark designed to evaluate LLMs on real-world NL-driven feature addition tasks, consisting of 634 tasks across 10 projects and 114k code changes. Each task pairs documentation updates with corresponding code implementations, validated by developer-written test cases. A subset of 114 high-quality, human-verified instances, NoCode-bench Verified, ensures reliable evaluation. Our experiments reveal that, despite high token usage, the best LLMs achieve a task success rate of only 15.79%, highlighting challenges in cross-file editing, codebase understanding, and tool calling. These findings indicate that LLMs are not yet ready for fully NL-driven no-code development. NoCode-bench lays the foundation for future advances in this area.
- Abstract(参考訳): 自然言語駆動のノーコード開発では、ユーザーはソースコードを編集する代わりに自然言語(NL)を使ってソフトウェア機能を指定できる。
大規模言語モデル(LLM)は、このパラダイムを実現する可能性を示している。
この文脈では、ソフトウェアドキュメンテーションは機能のNL仕様として機能する。
NoCode-benchは、実際のNL駆動の機能追加タスクでLLMを評価するために設計されたベンチマークで、10のプロジェクトにわたる634のタスクと114kのコード変更で構成されている。
各タスクは、開発者によって書かれたテストケースによって検証された、対応するコード実装とドキュメントの更新をペアリングする。
高品質で人間認証された114のインスタンスのサブセット、NoCode-bench Verifiedは信頼性の高い評価を保証する。
我々の実験によると、トークンの使用率が高いにもかかわらず、最高のLCMはタスクの成功率をわずか15.79%で達成し、クロスファイル編集、コードベース理解、ツール呼び出しの課題を強調している。
これらの結果から,LLMはNL駆動のノーコード開発にはまだ準備が整っていないことが示唆された。
NoCode-benchはこの領域における将来の進歩の基礎を成している。
関連論文リスト
- IFEvalCode: Controlled Code Generation [69.28317223249358]
本稿では,Code LLMの命令追従能力を改善するために,前方および後方制約生成を提案する。
IFEvalCodeは、7つのプログラミング言語の1.6Kテストサンプルからなる多言語ベンチマークである。
論文 参考訳(メタデータ) (2025-07-30T08:08:48Z) - MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks [56.34018316319873]
我々は,最新のLLMをロシア語で評価するためのベンチマークであるMERA Codeを提案する。
このベンチマークには、8つのプログラミング言語にまたがる11の評価タスクが含まれている。
我々はオープンなLLMとフロンティアAPIモデルを評価し、非英語言語における実用的なコーディングタスクの観点からそれらの制限を分析した。
論文 参考訳(メタデータ) (2025-07-16T14:31:33Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [20.013757490442064]
タスク指向の命令に準拠する大規模言語モデル(LLM)の能力を評価するために設計された最初のベンチマークであるCodeIFを紹介する。
CodeIFは関数合成、アルゴリズム命令、コード説明など幅広いタスクを含んでいる。
我々はLLMによる広範囲な実験を行い、これらの課題の要求を満たす上での強みと限界を分析した。
論文 参考訳(メタデータ) (2025-02-26T14:19:49Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - Towards Generating Functionally Correct Code Edits from Natural Language
Issue Descriptions [11.327913840111378]
Defects4J-NL2Fixは、人気のあるDefects4Jデータセットから283のJavaプログラムのデータセットで、バグ修正の高レベルな記述を付加します。
本研究は,この課題に対するいくつかの最先端LCMの性能を実証的に評価する。
論文 参考訳(メタデータ) (2023-04-07T18:58:33Z) - LLMSecEval: A Dataset of Natural Language Prompts for Security
Evaluations [4.276841620787673]
Codexのような大規模言語モデル(LLM)は、コード補完とコード生成タスクを実行する強力なツールである。
これらのモデルは、パブリックGitHubリポジトリから言語やプログラミングプラクティスを学ぶことによって、自然言語(NL)記述からコードスニペットを生成することができる。
LLMはNL駆動によるソフトウェアアプリケーションのデプロイを約束するが、それらが生成するコードのセキュリティは広く調査されておらず、文書化されていない。
論文 参考訳(メタデータ) (2023-03-16T15:13:58Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。