Real-Time Object Detection and Classification using YOLO for Edge FPGAs
- URL: http://arxiv.org/abs/2507.18174v1
- Date: Thu, 24 Jul 2025 08:17:37 GMT
- Title: Real-Time Object Detection and Classification using YOLO for Edge FPGAs
- Authors: Rashed Al Amin, Roman Obermaisser,
- Abstract summary: This paper presents a resource-efficient real-time object detection and classification system based on YOLOv5 optimized for FPGA deployment.<n> Experimental results demonstrate a classification accuracy of 99%, with a power consumption of 3.5W and a processing speed of 9 frames per second (FPS)<n>These findings highlight the effectiveness of the proposed approach in enabling real-time, resource-efficient object detection and classification for edge computing applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection and classification are crucial tasks across various application domains, particularly in the development of safe and reliable Advanced Driver Assistance Systems (ADAS). Existing deep learning-based methods such as Convolutional Neural Networks (CNNs), Single Shot Detectors (SSDs), and You Only Look Once (YOLO) have demonstrated high performance in terms of accuracy and computational speed when deployed on Field-Programmable Gate Arrays (FPGAs). However, despite these advances, state-of-the-art YOLO-based object detection and classification systems continue to face challenges in achieving resource efficiency suitable for edge FPGA platforms. To address this limitation, this paper presents a resource-efficient real-time object detection and classification system based on YOLOv5 optimized for FPGA deployment. The proposed system is trained on the COCO and GTSRD datasets and implemented on the Xilinx Kria KV260 FPGA board. Experimental results demonstrate a classification accuracy of 99%, with a power consumption of 3.5W and a processing speed of 9 frames per second (FPS). These findings highlight the effectiveness of the proposed approach in enabling real-time, resource-efficient object detection and classification for edge computing applications.
Related papers
- Spatiotemporal Attention Learning Framework for Event-Driven Object Recognition [1.0445957451908694]
Event-based vision sensors capture local pixel-level intensity changes as a sparse event stream containing position, polarity, and information.<n>This paper presents a novel learning framework for event-based object recognition, utilizing a VARGG network enhanced with Contemporalal Block Attention Module (CBAM)<n>Our approach achieves comparable performance to state-of-the-art ResNet-based methods while reducing parameter count by 2.3% compared to the original VGG model.
arXiv Detail & Related papers (2025-04-01T02:37:54Z) - Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
This paper introduces Fast-COS, a novel single-stage object detection framework crafted specifically for driving scenes.<n> RAViT achieves 81.4% Top-1 accuracy on the ImageNet-1K dataset.<n>It surpasses leading models in efficiency, delivering up to 75.9% faster GPU inference and 1.38 higher throughput on edge devices.
arXiv Detail & Related papers (2025-02-11T09:54:09Z) - RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.<n>This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
arXiv Detail & Related papers (2025-01-16T10:56:45Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.<n>Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.<n>We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
This paper proposes an efficient, low-complexity and anchor-free object detector based on the state-of-the-art YOLO framework.
We develop an enhanced data augmentation method to effectively suppress overfitting during training, and design a hybrid random loss function to improve the detection accuracy of small objects.
Our baseline model can reach the accuracy of 50.6% AP50:95 and 69.8% AP50 in MS 2017 dataset, 26.4% AP50:95 and 44.8% AP50 in VisDrone 2019-DET dataset, and it meets real-time requirements (FPS>=30) on edge-computing device Nvidia
arXiv Detail & Related papers (2023-02-15T06:05:14Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Oriented R-CNN for Object Detection [61.78746189807462]
This work proposes an effective and simple oriented object detection framework, termed Oriented R-CNN.
In the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner.
The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them.
arXiv Detail & Related papers (2021-08-12T12:47:43Z) - RMOPP: Robust Multi-Objective Post-Processing for Effective Object
Detection [0.0]
RMOPP is a statistically driven, post-processing algorithm that allows for simultaneous optimization of precision and recall.
We provide a compelling test case on YOLOv2 using the MS-COCO dataset.
arXiv Detail & Related papers (2021-02-09T00:02:38Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.