Differential-UMamba: Rethinking Tumor Segmentation Under Limited Data Scenarios
- URL: http://arxiv.org/abs/2507.18177v2
- Date: Tue, 29 Jul 2025 11:21:50 GMT
- Title: Differential-UMamba: Rethinking Tumor Segmentation Under Limited Data Scenarios
- Authors: Dhruv Jain, Romain Modzelewski, Romain Herault, Clement Chatelain, Eva Torfeh, Sebastien Thureau,
- Abstract summary: We introduce Diff-UMamba, a novel architecture that combines the UNet framework with the mamba mechanism to model long-range dependencies.<n>At the heart of Diff-UMamba is a noise reduction module, which employs a signal differencing strategy to suppress noisy or irrelevant activations.<n>The architecture achieves improved segmentation accuracy and robustness, particularly in low-data settings.
- Score: 3.1231963031043786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In data-scarce scenarios, deep learning models often overfit to noise and irrelevant patterns, which limits their ability to generalize to unseen samples. To address these challenges in medical image segmentation, we introduce Diff-UMamba, a novel architecture that combines the UNet framework with the mamba mechanism to model long-range dependencies. At the heart of Diff-UMamba is a noise reduction module, which employs a signal differencing strategy to suppress noisy or irrelevant activations within the encoder. This encourages the model to filter out spurious features and enhance task-relevant representations, thereby improving its focus on clinically significant regions. As a result, the architecture achieves improved segmentation accuracy and robustness, particularly in low-data settings. Diff-UMamba is evaluated on multiple public datasets, including medical segmentation decathalon dataset (lung and pancreas) and AIIB23, demonstrating consistent performance gains of 1-3% over baseline methods in various segmentation tasks. To further assess performance under limited data conditions, additional experiments are conducted on the BraTS-21 dataset by varying the proportion of available training samples. The approach is also validated on a small internal non-small cell lung cancer dataset for the segmentation of gross tumor volume in cone beam CT, where it achieves a 4-5% improvement over baseline.
Related papers
- FedGIN: Federated Learning with Dynamic Global Intensity Non-linear Augmentation for Organ Segmentation using Multi-modal Images [0.0]
Medical image segmentation plays a crucial role in AI-assisted diagnostics, surgical planning, and treatment monitoring.<n>We propose FedGIN, a Federated Learning framework that enables multimodal organ segmentation without sharing raw patient data.
arXiv Detail & Related papers (2025-08-07T08:16:35Z) - GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models [1.0456203870202954]
This work introduces a novel framework for brain tumor segmentation leveraging pre-trained GANs and Unet architectures.<n>By combining a global anomaly detection module with a refined mask generation network, the proposed model accurately identifies tumor-sensitive regions.<n>Multi-modal MRI data and synthetic image augmentation are employed to improve robustness and address the challenge of limited annotated datasets.
arXiv Detail & Related papers (2025-06-26T13:28:09Z) - InceptionMamba: Efficient Multi-Stage Feature Enhancement with Selective State Space Model for Microscopic Medical Image Segmentation [15.666926528144202]
We propose an efficient framework for the segmentation task, named InceptionMamba, which encodes multi-stage rich features.<n>We exploit semantic cues to capture both low-frequency and high-frequency regions to enrich the multi-stage features.<n>Our model achieves state-of-the-art performance on two challenging microscopic segmentation datasets.
arXiv Detail & Related papers (2025-06-13T20:25:12Z) - Multi-encoder nnU-Net outperforms transformer models with self-supervised pretraining [0.0]
This study addresses the essential task of medical image segmentation, which involves the automatic identification and delineation of anatomical structures and pathological regions in medical images.<n>We propose a novel self-supervised learning Multi-encoder nnU-Net architecture designed to process multiple MRI modalities independently through separate encoders.<n>Our Multi-encoder nnU-Net demonstrates exceptional performance, achieving a Dice Similarity Coefficient (DSC) of 93.72%, which surpasses that of other models such as vanilla nnU-Net, SegResNet, and Swin UNETR.
arXiv Detail & Related papers (2025-04-04T14:31:06Z) - $C^2$AV-TSE: Context and Confidence-aware Audio Visual Target Speaker Extraction [80.57232374640911]
We propose a model-agnostic strategy called the Mask-And-Recover (MAR)<n>MAR integrates both inter- and intra-modality contextual correlations to enable global inference within extraction modules.<n>To better target challenging parts within each sample, we introduce a Fine-grained Confidence Score (FCS) model.
arXiv Detail & Related papers (2025-04-01T13:01:30Z) - Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - CausalCellSegmenter: Causal Inference inspired Diversified Aggregation
Convolution for Pathology Image Segmentation [9.021612471640635]
Deep learning models have shown promising performance for cell nucleus segmentation in the field of pathology image analysis.
We propose a novel framework termed CausalCellSegmenter, which combines Causal Inference Module (CIM) with Diversified Aggregation Convolution (DAC) techniques.
arXiv Detail & Related papers (2024-03-10T03:04:13Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.