論文の概要: Information Security Based on LLM Approaches: A Review
- arxiv url: http://arxiv.org/abs/2507.18215v1
- Date: Thu, 24 Jul 2025 09:09:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.320391
- Title: Information Security Based on LLM Approaches: A Review
- Title(参考訳): LLMアプローチに基づく情報セキュリティ
- Authors: Chang Gong, Zhongwen Li, Xiaoqi Li,
- Abstract要約: 大規模言語モデル(LLM)は、情報セキュリティの分野で幅広い応用可能性を示している。
本稿では,ニューラルネットワークとTransformerアーキテクチャに基づいて,大規模言語モデルの技術的基盤を分析する。
大規模言語モデリングの導入は,検出精度の向上とセキュリティシステムの誤警報率の低減に有効である。
- 参考スコア(独自算出の注目度): 3.292159069489852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information security is facing increasingly severe challenges, and traditional protection means are difficult to cope with complex and changing threats. In recent years, as an emerging intelligent technology, large language models (LLMs) have shown a broad application prospect in the field of information security. In this paper, we focus on the key role of LLM in information security, systematically review its application progress in malicious behavior prediction, network threat analysis, system vulnerability detection, malicious code identification, and cryptographic algorithm optimization, and explore its potential in enhancing security protection performance. Based on neural networks and Transformer architecture, this paper analyzes the technical basis of large language models and their advantages in natural language processing tasks. It is shown that the introduction of large language modeling helps to improve the detection accuracy and reduce the false alarm rate of security systems. Finally, this paper summarizes the current application results and points out that it still faces challenges in model transparency, interpretability, and scene adaptability, among other issues. It is necessary to explore further the optimization of the model structure and the improvement of the generalization ability to realize a more intelligent and accurate information security protection system.
- Abstract(参考訳): 情報セキュリティはますます深刻な課題に直面しており、従来の保護手段は複雑で変化する脅威に対処するのは難しい。
近年,新たなインテリジェント技術として,大規模言語モデル (LLM) が情報セキュリティ分野の幅広い応用可能性を示している。
本稿では,情報セキュリティにおけるLLMの重要な役割に注目し,悪意のある行動予測,ネットワーク脅威分析,システムの脆弱性検出,悪意のあるコード識別,暗号アルゴリズムの最適化などにおけるアプリケーションの進捗状況を体系的に検証し,セキュリティ保護性能の向上の可能性を探る。
本稿では,ニューラルネットワークとTransformerアーキテクチャに基づいて,大規模言語モデルの技術的基盤と,自然言語処理タスクにおけるその利点を分析する。
大規模言語モデリングの導入は,検出精度の向上とセキュリティシステムの誤警報率の低減に有効である。
最後に、本論文では、現在のアプリケーションの結果を要約し、モデル透明性、解釈可能性、シーン適応性などの課題に直面していることを指摘している。
よりインテリジェントで正確な情報セキュリティ保護システムを実現するために,モデル構造の最適化と一般化能力の向上について検討する必要がある。
関連論文リスト
- A Survey on Data Security in Large Language Models [12.23432845300652]
LLM(Large Language Models)は、自然言語処理、テキスト生成、機械翻訳、会話システムなどのパワーアプリケーションの基礎である。
トランスフォーメーションの可能性にもかかわらず、これらのモデルは本質的に大量のトレーニングデータに依存しており、しばしば多種多様な未処理ソースから収集され、深刻なデータセキュリティリスクにさらされる。
有害または悪意のあるデータは、モデル動作を妥協し、有害な出力、幻覚、即発注射やデータ中毒などの脅威に対する脆弱性などの問題を引き起こす。
本調査は、LLMが直面する主要なデータセキュリティリスクの概要と、敵を含む現在の防衛戦略のレビューを提供する。
論文 参考訳(メタデータ) (2025-08-04T11:28:34Z) - Improving LLM Reasoning for Vulnerability Detection via Group Relative Policy Optimization [45.799380822683034]
大規模言語モデル(LLM)のためのRLベースファインタニング技術の進歩を目的とした広範な研究を提案する。
一般的に採用されているLSMには,特定の脆弱性を過度に予測する傾向があり,他の脆弱性を検出できない,といった,重要な制限が強調される。
この課題に対処するために、構造化されたルールベースの報酬を通してLLMの振る舞いを導くための最近の政策段階的手法であるグループ相対政策最適化(GRPO)について検討する。
論文 参考訳(メタデータ) (2025-07-03T11:52:45Z) - A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
モデル抽出攻撃は、デプロイされた言語モデルに重大なセキュリティ脅威をもたらす。
この調査は、抽出攻撃と防御攻撃の包括的分類、機能抽出への攻撃の分類、データ抽出の訓練、およびプロンプトターゲット攻撃を提供する。
モデル保護,データプライバシ保護,迅速なターゲット戦略に編成された防御機構について検討し,その効果を異なる展開シナリオで評価する。
論文 参考訳(メタデータ) (2025-06-26T22:02:01Z) - From Texts to Shields: Convergence of Large Language Models and Cybersecurity [15.480598518857695]
本稿では,大規模言語モデル(LLM)とサイバーセキュリティの収束について検討する。
ソフトウェアおよびネットワークセキュリティ、5G脆弱性分析、生成セキュリティ工学におけるLLMの新たな応用について検討する。
論文 参考訳(メタデータ) (2025-05-01T20:01:07Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
本調査では,GUIエージェントの信頼性を5つの重要な次元で検証する。
敵攻撃に対する脆弱性、シーケンシャルな意思決定における障害モードのカスケードなど、大きな課題を特定します。
GUIエージェントが普及するにつれて、堅牢な安全基準と責任ある開発プラクティスを確立することが不可欠である。
論文 参考訳(メタデータ) (2025-03-30T13:26:00Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - Safety at Scale: A Comprehensive Survey of Large Model and Agent Safety [296.5392512998251]
我々は、敵攻撃、データ中毒、バックドア攻撃、ジェイルブレイクとプロンプトインジェクション攻撃、エネルギー遅延攻撃、データとモデル抽出攻撃、出現するエージェント固有の脅威を含む、大規模なモデルに対する安全脅威の包括的分類を提示する。
我々は、大規模なモデル安全性におけるオープンな課題を特定し、議論し、包括的な安全性評価、スケーラブルで効果的な防御機構、持続可能なデータプラクティスの必要性を強調します。
論文 参考訳(メタデータ) (2025-02-02T05:14:22Z) - Beyond the Surface: An NLP-based Methodology to Automatically Estimate CVE Relevance for CAPEC Attack Patterns [42.63501759921809]
本稿では,自然言語処理(NLP)を利用して,共通脆弱性・暴露(CAPEC)脆弱性と共通攻撃パターン・分類(CAPEC)攻撃パターンを関連付ける手法を提案する。
実験による評価は,最先端モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-01-13T08:39:52Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げた。
これらのモデルは、強力な言語理解と生成能力を示すために、広大なデータセットでトレーニングされている。
プライバシーとセキュリティの問題は、そのライフサイクルを通じて明らかになっている。
論文 参考訳(メタデータ) (2024-06-12T07:55:32Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。