TCM-Tongue: A Standardized Tongue Image Dataset with Pathological Annotations for AI-Assisted TCM Diagnosis
- URL: http://arxiv.org/abs/2507.18288v1
- Date: Thu, 24 Jul 2025 10:49:31 GMT
- Title: TCM-Tongue: A Standardized Tongue Image Dataset with Pathological Annotations for AI-Assisted TCM Diagnosis
- Authors: Xuebo Jin, Longfei Gao, Anshuo Tong, Zhengyang Chen, Jianlei Kong, Ning Sun, Huijun Ma, Qiang Wang, Yuting Bai, Tingli Su,
- Abstract summary: Traditional Chinese medicine (TCM) tongue diagnosis faces standardization challenges due to subjective interpretation and inconsistent imaging protocols.<n>To address this gap, we present the first specialized dataset for AI-driven TCM tongue diagnosis.<n>The dataset includes 6,719 high-quality images captured under standardized conditions and annotated with 20 pathological symptom categories.
- Score: 12.39302160184597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Chinese medicine (TCM) tongue diagnosis, while clinically valuable, faces standardization challenges due to subjective interpretation and inconsistent imaging protocols, compounded by the lack of large-scale, annotated datasets for AI development. To address this gap, we present the first specialized dataset for AI-driven TCM tongue diagnosis, comprising 6,719 high-quality images captured under standardized conditions and annotated with 20 pathological symptom categories (averaging 2.54 clinically validated labels per image, all verified by licensed TCM practitioners). The dataset supports multiple annotation formats (COCO, TXT, XML) for broad usability and has been benchmarked using nine deep learning models (YOLOv5/v7/v8 variants, SSD, and MobileNetV2) to demonstrate its utility for AI development. This resource provides a critical foundation for advancing reliable computational tools in TCM, bridging the data shortage that has hindered progress in the field, and facilitating the integration of AI into both research and clinical practice through standardized, high-quality diagnostic data.
Related papers
- Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
We present UltraFedFM, an innovative privacy-preserving ultrasound foundation model.
UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries.
It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation.
arXiv Detail & Related papers (2024-11-25T13:40:11Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
Synthetic Data Generation based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered.<n>This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images.<n>The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Full-Scale Indexing and Semantic Annotation of CT Imaging: Boosting FAIRness [0.41942958779358674]
The proposed approach focuses on the integration and enhancement of clinical computed tomography (CT) image series for better findability, accessibility, interoperability, and reusability.
The metadata is standardized with HL7 FHIR resources to enable efficient data recognition and data exchange between research projects.
The study successfully integrates a robust process within the UKSH MeDIC, leading to the semantic enrichment of over 230,000 CT image series and over 8 million SNOMED CT annotations.
arXiv Detail & Related papers (2024-06-21T17:55:22Z) - ProtoAL: Interpretable Deep Active Learning with prototypes for medical imaging [0.6292138336765966]
We propose the ProtoAL method, where we integrate an interpretable DL model into the Deep Active Learning framework.
We evaluated ProtoAL on the Messidor dataset, achieving an area under the precision-recall curve of 0.79 while utilizing only 76.54% of the available labeled data.
arXiv Detail & Related papers (2024-04-06T21:39:49Z) - VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification [33.699424327366856]
We present VIsualization and Masked AutoEncoder (VIS-MAE), novel model weights specifically designed for medical imaging.<n>VIS-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities.<n>It is then adapted to classification and segmentation tasks using explicit labels.
arXiv Detail & Related papers (2024-02-01T21:45:12Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
Prosthetic Joint Infection (PJI) is a prevalent and severe complication.
Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished.
This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques.
arXiv Detail & Related papers (2023-05-29T11:25:57Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - TCM-SD: A Benchmark for Probing Syndrome Differentiation via Natural
Language Processing [31.190757020836656]
We focus on the core task of the TCM diagnosis and treatment system -- syndrome differentiation (SD)
Our dataset contains 54,152 real-world clinical records covering 148 syndromes.
We propose a domain-specific pre-trained language model, called ZY-BERT.
arXiv Detail & Related papers (2022-03-21T09:59:54Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.