論文の概要: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
- arxiv url: http://arxiv.org/abs/2507.18323v1
- Date: Thu, 24 Jul 2025 11:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.528219
- Title: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
- Title(参考訳): ECG記述における半教師付きセマンティックセグメンテーションのためのマルチデータセットベンチマーク
- Authors: Minje Park, Jeonghwa Lim, Taehyung Yu, Sunghoon Joo,
- Abstract要約: 半教師付きセマンティックセマンティックセグメンテーション(SemiSeg)のECGデライン化における最初の体系的ベンチマークを示す。
我々は、これまで未使用だったソースを含む複数の公開データセットをキュレートし、統一し、堅牢で多様な評価をサポートしました。
その結果, 半教師付きECGデライン化において, 変圧器は畳み込みネットワークよりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that our benchmark will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.
- Abstract(参考訳): 心電図(ECG)デライン化は,有意な波形特徴のセグメンテーションであり,臨床診断に重要である。
ディープラーニングを使った最近の進歩にもかかわらず、公開可能な注釈付きデータセットの不足により、進歩は制限されている。
半教師付き学習は、豊富な未ラベルのECGデータを活用することで、有望なソリューションを提供する。
本研究では,心電図記述における半教師付きセマンティックセグメンテーション(SemiSeg)の最初の体系的ベンチマークを示す。
我々は、これまで未使用だったソースを含む複数の公開データセットをキュレートし、統一し、堅牢で多様な評価をサポートしました。
コンピュータビジョンから5つの代表的なSemiSegアルゴリズムを採用し、畳み込みネットワークとトランスフォーマーという2つの異なるアーキテクチャで実装し、ドメイン内とクロスドメインの2つの異なる設定で評価した。
さらに、ECG固有のトレーニング設定と強化戦略を提案し、標準化された評価フレームワークを導入する。
その結果, 半教師付きECGデライン化において, 変圧器は畳み込みネットワークよりも優れていた。
我々は、このベンチマークが半教師付きECGデライン化手法の基盤として機能し、この領域におけるさらなる研究を促進することを期待する。
関連論文リスト
- From Token to Rhythm: A Multi-Scale Approach for ECG-Language Pretraining [22.214252217020174]
本稿では,マルチスケールECG-Language Pretraining(MELP)モデルを紹介する。
我々は、ゼロショットECG分類、線形探索、転送学習を含む、複数のタスクにわたる3つのパブリックECGデータセット上でMELPを評価する。
論文 参考訳(メタデータ) (2025-06-11T07:22:17Z) - Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling [50.58126509704037]
医療スイート(Heartcare Suite)は、微細心電図(ECG)の理解のためのフレームワークである。
Heartcare-220Kは高品質で構造化され、包括的なマルチモーダルECGデータセットである。
Heartcare-Benchは、ECGシナリオにおける医療マルチモーダル大言語モデル(Med-MLLM)の最適化を導くためのベンチマークである。
論文 参考訳(メタデータ) (2025-06-06T07:56:41Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
GEMは,第1回MLLM統合ECG時系列,第12回リードECG画像,地上および臨床のECG解釈のためのテキストである。
GEMは、3つのコアイノベーションを通じて機能的解析、エビデンス駆動推論、および臨床医のような診断プロセスを可能にする。
基礎心電図理解におけるMLLMの能力を評価するために,臨床動機付けのベンチマークであるグラウンドドECGタスクを提案する。
論文 参考訳(メタデータ) (2025-03-08T05:48:53Z) - ECG-FM: An Open Electrocardiogram Foundation Model [3.8270632390229777]
本稿では,ECG分析のためのオープン基盤モデルであるECG-FMについて述べる。
ECG-FMは、コントラストと生成的自己教師付き学習のハイブリッドアプローチを用いて事前訓練されたトランスフォーマーベースのモデルである。
我々は,ECG-FMがロバストで,ラベル効率が高く,機能的に識別可能であることを確認した。
論文 参考訳(メタデータ) (2024-08-09T17:06:49Z) - ECG Semantic Integrator (ESI): A Foundation ECG Model Pretrained with LLM-Enhanced Cardiological Text [14.06147507373525]
本研究は,12誘導ECG信号の学習表現の品質とロバスト性の向上を目的とした,新しいマルチモーダルコントラスト保持フレームワークを提案する。
私たちのフレームワークは、Cardio Query Assistant(CQA)とECG Semantics Integrator(ESI)の2つの重要なコンポーネントで構成されています。
論文 参考訳(メタデータ) (2024-05-26T06:45:39Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - ETP: Learning Transferable ECG Representations via ECG-Text Pre-training [10.856365645831728]
ECG-Text Pre-training (ETP)は、ECG信号とテキストレポートをリンクするクロスモーダル表現を学習するために設計された革新的なフレームワークである。
ETPはECGエンコーダと事前訓練された言語モデルを使用して、ECG信号を対応するテキストレポートと整合させる。
論文 参考訳(メタデータ) (2023-09-06T19:19:26Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL [15.552721021992847]
PTB-XLデータセットのベンチマーク結果について検討した。
畳み込みニューラルネットワーク、特にresnetおよびinceptionベースのアーキテクチャは、すべてのタスクで最高のパフォーマンスを示します。
結果は、隠れ層化、モデルの不確実性、探索的解釈可能性分析の観点から、分類アルゴリズムの深い洞察によって補完される。
論文 参考訳(メタデータ) (2020-04-28T17:55:17Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。