論文の概要: Efficient Uncertainty in LLMs through Evidential Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2507.18366v1
- Date: Thu, 24 Jul 2025 12:46:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.632397
- Title: Efficient Uncertainty in LLMs through Evidential Knowledge Distillation
- Title(参考訳): 証拠的知識蒸留によるLCMの有効不確かさ
- Authors: Lakshmana Sri Harsha Nemani, P. K. Srijith, Tomasz Kuśmierczyk,
- Abstract要約: 性能を犠牲にすることなく,LLMの効率的かつ効果的な不確実性評価を可能にする新しい手法を提案する。
我々は、不確実性を考慮した教師モデルを、同じアーキテクチャを共有するコンパクトな学生モデルに蒸留するが、Lo-Rank Adaptation (LoRA)を用いて微調整する。
分類データセットに関する実証的な評価は、そのような学生が同等または優れた予測的・不確実性定量化性能を達成できることを証明している。
- 参考スコア(独自算出の注目度): 3.864321514889099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate uncertainty quantification remains a key challenge for standard LLMs, prompting the adoption of Bayesian and ensemble-based methods. However, such methods typically necessitate computationally expensive sampling, involving multiple forward passes to effectively estimate predictive uncertainty. In this paper, we introduce a novel approach enabling efficient and effective uncertainty estimation in LLMs without sacrificing performance. Specifically, we distill uncertainty-aware teacher models - originally requiring multiple forward passes - into compact student models sharing the same architecture but fine-tuned using Low-Rank Adaptation (LoRA). We compare two distinct distillation strategies: one in which the student employs traditional softmax-based outputs, and another in which the student leverages Dirichlet-distributed outputs to explicitly model epistemic uncertainty via evidential learning. Empirical evaluations on classification datasets demonstrate that such students can achieve comparable or superior predictive and uncertainty quantification performance relative to their teacher models, while critically requiring only a single forward pass. To our knowledge, this is the first demonstration that immediate and robust uncertainty quantification can be achieved in LLMs through evidential distillation.
- Abstract(参考訳): 正確な不確実性定量化は標準LLMにとって重要な課題であり、ベイジアン法やアンサンブル法が採用される。
しかし、そのような手法は一般的に、予測の不確実性を効果的に推定するために、複数の前方通過を含む計算コストのかかるサンプリングを必要とする。
本稿では,LLMにおいて性能を犠牲にすることなく効率よく効果的な不確実性推定を可能にする新しい手法を提案する。
具体的には、複数の前方パスを必要とする不確実性を考慮した教師モデルを、同じアーキテクチャを共有するコンパクトな学生モデルに蒸留するが、Lo-Rank Adaptation (LoRA)を用いて微調整する。
本稿では,学生が従来のソフトマックス・アウトプットを取り入れた蒸留法と,ディリクレ・アウトプットを生かした蒸留法を比較した。
分類データセットに関する実証的な評価は、そのような学生が、教師モデルに対して同等または優れた予測的・不確実性定量化性能を達成できることを示し、同時に、1回のフォワードパスのみを批判的に要求している。
我々の知る限りでは、これは明らかな蒸留を通じてLLMにおいて即時かつ堅牢な不確実性定量化が達成できる最初の実証である。
関連論文リスト
- Efficient Uncertainty Estimation via Distillation of Bayesian Large Language Models [12.69571386421462]
本稿では,不確実性推定のためのテスト時間サンプリングの必要性を解消する可能性を検討する。
既成のベイズ式LLMを非ベイズ式LLMに蒸留し, 予測分布のばらつきを最小限に抑える。
実験により,トレーニングデータにおける不確実性推定能力は,未確認テストデータにうまく一般化できることが実証された。
論文 参考訳(メタデータ) (2025-05-16T22:26:03Z) - Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings [11.33157177182775]
大規模言語モデル(LLM)における正確な不確実性の定量化は、信頼性の高いデプロイメントに不可欠である。
LLMにおける意味的不確実性を測定するための現在の最先端手法は、厳密な双方向の包含基準に依存している。
本研究では,意味的不確実性のよりスムーズでロバストな推定を実現するためにセマンティックな埋め込みを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-30T04:41:46Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
大規模言語モデル(LLM)が,その世代を理論的にどのように説明するかを考察する。
提案手法は帰属に基づく説明よりも「偽り」が少ないことを示す。
論文 参考訳(メタデータ) (2024-06-28T20:06:30Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
我々は不確実性に基づくアクティブラーニングとLoRAを統合する新しい手法を提案する。
不確実性ギャップについて、ベースモデルの不確実性とフルモデルの不確実性を組み合わせた動的不確実性測定を導入する。
モデルのキャリブレーションが不十分な場合、LoRAトレーニング中に正規化手法を導入し、モデルが過度に信頼されないようにする。
論文 参考訳(メタデータ) (2024-03-02T10:38:10Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。