Emergent-gravity Hall effect from quantum geometry
- URL: http://arxiv.org/abs/2507.18458v1
- Date: Thu, 24 Jul 2025 14:37:07 GMT
- Title: Emergent-gravity Hall effect from quantum geometry
- Authors: Hiroki Yoshida, Takehito Yokoyama,
- Abstract summary: We propose a Hall effect driven by effective gravitational fields arising from quantum geometry.<n>Our findings open a new avenue for exploring gravitational effects in quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically propose a Hall effect driven by effective gravitational fields arising from quantum geometry. We develop four mechanisms for this ''emergent-gravity Hall effect" : real-space gravity, momentum-space gravity, gravitional anomalous velocity, and gravitational Lorentz force which are described by the Christoffel symbols in real, momentum, and time spaces. We construct a unified theoretical framework to systematically investigate the effects of emergent gravity in these spaces on transport phenomena based on the semiclassical theory. We demonstrate these effects by model calculations and clarify the conditions under which a finite Hall response can arise. Our findings open a new avenue for exploring gravitational effects in quantum systems.
Related papers
- Gravitational redshift via quantized linear gravity [44.99833362998488]
We employ linearized quantum gravity to show that gravitational redshift occurs as a purely quantum process.<n>Redshift occurs as predicted by general relativity but arises in flat spacetime in the absence of curvature.<n>Results can help improve our understanding of the quantum nature of gravity in the low energy and low curvature regime.
arXiv Detail & Related papers (2025-04-04T21:44:34Z) - Looking for the quantum aspects of gravity in the gravitational Aharonov-Bohm experiment [0.0]
We develop a comprehensive theoretical framework for the gravitational Aharonov-Bohm (AB) effect.<n>This framework uncovers key insights into the entanglement dynamics and coherence properties of quantum systems.<n>Our analysis suggests that the derived gravitational AB phase is consistent with classical predictions.
arXiv Detail & Related papers (2024-12-12T13:29:04Z) - Gravitational Wave and Quantum Graviton Interferometer Arm Detection of Gravitons [0.0]
This paper explores the quantum and classical descriptions of gravitational wave detection in interferometers like LIGO.<n>We demonstrate that a graviton scattering and quantum optics model succeeds in explaining the observed arm displacements, while the classical gravitational wave approach and a quantum graviton energy method also successfully predict the correct results.
arXiv Detail & Related papers (2024-11-09T19:33:34Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Proposal for a Quantum Mechanical Test of Gravity at Millimeter Scale [11.799047242336727]
We propose a novel experiment that utilizes the Josephson effect to detect the different evolution of quantum phase induced from the potential difference caused by gravity.<n>We demonstrate that this experiment can test gravity quantum mechanically at the millimeter scale, and also has a potential to investigate the parity invariance of gravity at small scales.
arXiv Detail & Related papers (2024-05-25T13:27:28Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Testing the Braneworld Theory with Identical Particles [41.94295877935867]
braneworld scenarios postulate that the spacetime we effectively observe is actually a 4-dimensional brane embedded in a higher-dimensional spacetime.
We propose an experimental test that uses a pair of gravitationally interacting identical particles to determine the validity of certain braneworld models.
arXiv Detail & Related papers (2023-09-06T16:40:12Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Quantum interference in external gravitational fields beyond General
Relativity [0.0]
We study the phenomenon of quantum interference in the presence of external gravitational fields.
In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm-Aharonov effect.
On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial role.
arXiv Detail & Related papers (2021-04-22T16:11:42Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
We analyze the weak-field limit of General Relativity with matter and its possible quantisations.
This analysis aims towards a predictive quantum theory to provide a first-principles description of gravitational effects in macroscopic quantum systems.
arXiv Detail & Related papers (2021-03-14T21:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.