論文の概要: XAI-Guided Analysis of Residual Networks for Interpretable Pneumonia Detection in Paediatric Chest X-rays
- arxiv url: http://arxiv.org/abs/2507.18647v1
- Date: Fri, 18 Jul 2025 21:19:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.679693
- Title: XAI-Guided Analysis of Residual Networks for Interpretable Pneumonia Detection in Paediatric Chest X-rays
- Title(参考訳): XAI-Guided Analysis of Residual Networks for Interpretable Pneumonia Detection in Paediatric Chest X-ray
- Authors: Rayyan Ridwan,
- Abstract要約: 胸部X線で小児肺炎を自動的に診断するためのResidual Networks(ResNets)の解釈可能なディープラーニングモデルを提案する。
我々のResNet-50モデルは、大きな小児の胸部X線データセットに基づいて訓練され、高い分類精度(95.94%)、AUC-ROC(98.91%)、Cohen's Kappa(0.913)を実現し、臨床的に意味のある視覚的説明を伴う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pneumonia remains one of the leading causes of death among children worldwide, underscoring a critical need for fast and accurate diagnostic tools. In this paper, we propose an interpretable deep learning model on Residual Networks (ResNets) for automatically diagnosing paediatric pneumonia on chest X-rays. We enhance interpretability through Bayesian Gradient-weighted Class Activation Mapping (BayesGrad-CAM), which quantifies uncertainty in visual explanations, and which offers spatial locations accountable for the decision-making process of the model. Our ResNet-50 model, trained on a large paediatric chest X-rays dataset, achieves high classification accuracy (95.94%), AUC-ROC (98.91%), and Cohen's Kappa (0.913), accompanied by clinically meaningful visual explanations. Our findings demonstrate that high performance and interpretability are not only achievable but critical for clinical AI deployment.
- Abstract(参考訳): 肺炎は世界でも主要な死因の1つであり、迅速かつ正確な診断ツールの必要性を浮き彫りにしている。
本稿では,胸部X線上における小児肺炎の自動診断のためのResidual Networks(ResNets)の解釈可能なディープラーニングモデルを提案する。
本研究では,視覚的説明の不確実性を定量化し,モデルの意思決定過程に寄与する空間的位置を提供するBayesGrad-CAM(BayesGrad-CAM)を用いた,ベイズ勾配重み付きクラス活性化マッピング(BayesGrad-CAM)による解釈可能性の向上を図る。
我々のResNet-50モデルは、大きな小児の胸部X線データセットに基づいて訓練され、高い分類精度(95.94%)、AUC-ROC(98.91%)、Cohen's Kappa(0.913)を実現し、臨床的に意味のある視覚的説明を伴う。
以上の結果から, ハイパフォーマンスと解釈可能性は, 達成可能なだけでなく, 臨床用AIの展開にも不可欠であることが示唆された。
関連論文リスト
- AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs) [0.0]
本研究では,機械学習を用いた小児胸部肺炎分類システムを提案する。
このシステムは広州女子医療センターから0~5歳児の胸部X線画像5,863枚で訓練された。
その結果,小児肺炎分類の診断精度と効率を向上させるための深層学習とGANの有用性が示された。
論文 参考訳(メタデータ) (2025-07-13T19:38:49Z) - RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabricは、総合的なCXR解釈のための視覚的およびテキスト分析を統合するマルチエージェント、マルチモーダル推論フレームワークである。
システムは、病理診断に特殊なCXRエージェント、正確な解剖学的構造に視覚所見をマッピングする解剖学的解釈エージェント、および視覚的、解剖学的、臨床データを透明かつ証拠に基づく診断に合成する大規模なマルチモーダル推論モデルを利用した推論エージェントを使用する。
論文 参考訳(メタデータ) (2025-06-17T03:10:33Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Learning to Automatically Diagnose Multiple Diseases in Pediatric Chest
Radiographs Using Deep Convolutional Neural Networks [0.4697611383288171]
ディープ畳み込みニューラルネットワーク(D-CNN)は成人の胸部X線写真(CXR)スキャンにおいて顕著な性能を示した。
本稿では,5,017名の小児CXRスキャンの大規模なデータセットを遡及的に収集し,それぞれを経験者によって手動でラベル付けする。
その後、D-CNNモデルは3,550個の注釈付きスキャンで訓練され、複数の小児肺病理を自動分類する。
論文 参考訳(メタデータ) (2021-08-14T08:14:52Z) - Pulmonary embolism identification in computerized tomography pulmonary
angiography scans with deep learning technologies in COVID-19 patients [0.65756807269289]
本稿では,A-Scans画像における肺塞栓症同定のための最も正確かつ高速な深層学習モデルについて紹介する。
本研究では,肺塞栓症の診断精度を向上させるために,分類モデルと対象検出モデルを組み合わせた高速トラックソリューション(システム)を提案する。
論文 参考訳(メタデータ) (2021-05-24T10:23:21Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
我々は、Chest X-rays画像(CXR)に基づいて、新型コロナウイルス患者の肺妥協の度合いを判定するエンド・ツー・エンドのディープラーニングアーキテクチャを設計する。
当院で収集した約5,000個のCXR注釈画像の臨床的データセットを利用して検討した。
私たちのソリューションは、評価精度と一貫性において、一人のアノテータよりも優れています。
論文 参考訳(メタデータ) (2020-06-08T13:55:58Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
本稿では,診断パイプラインにおける基礎的,しかし困難な課題である肺分節に対する新しい深層学習手法を提案する。
本手法では, 逆批判モデルとともに, 最先端の完全畳み込みニューラルネットワークを用いる。
これは、患者プロファイルの異なる未確認データセットのCXRイメージによく当てはまり、JSRTデータセットの最終的なDSCRは97.5%に達した。
論文 参考訳(メタデータ) (2020-03-23T14:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。