論文の概要: Exploring the Landscape of Fairness Interventions in Software Engineering
- arxiv url: http://arxiv.org/abs/2507.18726v1
- Date: Thu, 24 Jul 2025 18:16:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.718688
- Title: Exploring the Landscape of Fairness Interventions in Software Engineering
- Title(参考訳): ソフトウェア工学におけるフェアネス・インターベンションの景観を探る
- Authors: Sadia Afrin Mim,
- Abstract要約: 現実の世界におけるAIの適用は、データ内の潜在的なリスク要因によって、複数のリスクとデメリットをもたらします。
本論文は,フェアネス問題に対処するために開発された様々な研究とアプローチを要約した調査として機能する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current developments in AI made it broadly significant for reducing human labor and expenses across several essential domains, including healthcare and finance. However, the application of AI in the actual world poses multiple risks and disadvantages due to potential risk factors in data (e.g., biased dataset). Practitioners developed a number of fairness interventions for addressing these kinds of problems. The paper acts as a survey, summarizing the various studies and approaches that have been developed to address fairness issues
- Abstract(参考訳): AIの現在の発展は、医療やファイナンスなど、いくつかの重要な領域における人的労働力と費用削減に大きく貢献した。
しかし、現実の世界におけるAIの適用は、データ(例えばバイアス付きデータセット)の潜在的なリスク要因によって、複数のリスクとデメリットをもたらします。
実践者はこのような問題に対処するための多くの公正な介入を開発した。
本論文は、公正問題に対処するために開発された様々な研究とアプローチを要約した調査として機能する。
関連論文リスト
- Open Challenges on Fairness of Artificial Intelligence in Medical Imaging Applications [3.8236840661885485]
この章ではまず、データ収集、モデルトレーニング、臨床展開など、さまざまなバイアス源について論じている。
そして、研究者や実践者からの注意を必要とすると信じているオープンな課題について議論する。
論文 参考訳(メタデータ) (2024-07-24T02:41:19Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
サイバー物理システム(CPS)は、予測保守や生産計画を含むアプリケーションに人工知能(AI)が活用できる膨大なデータセットを生成する。
AIの可能性を実証しているにもかかわらず、製造業のような分野に広く採用されていることは依然として限られている。
論文 参考訳(メタデータ) (2024-05-28T20:54:41Z) - Assessing the Potential of AI for Spatially Sensitive Nature-Related Financial Risks [0.0]
本報告では,ブラジル産牛肉供給利用事例と水利用利用事例という,2つの異なるユースケースのモデルに対するAIソリューションの可能性について述べる。
ブラジルの牛の農業用ユースケースは、自然に関する考慮事項を主要な金融決定に組み込む、グリーン化ファイナンスの一例である。
英国における水利事業のユースケースにおける自然ベースのソリューションの展開は、自然に肯定的な結果に投資するグリーン融資の例である。
論文 参考訳(メタデータ) (2024-04-26T12:42:39Z) - Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions [50.545824691484796]
ソフトウェア開発者の多様性と包摂性(SDDI)を改善するための課題と機会に関する6つのテーマを特定します。
4つのテーマの利点、害、今後の研究の方向性を特定します。
残りの2つのテーマ、人工知能とSDDIとAIとコンピュータサイエンスの教育について論じる。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
この調査論文は、AIの公平性とバイアスに関する簡潔で包括的な概要を提供する。
我々は、データ、アルゴリズム、人間の決定バイアスなどのバイアス源をレビューする。
偏りのあるAIシステムの社会的影響を評価し,不平等の持続性と有害なステレオタイプの強化に着目した。
論文 参考訳(メタデータ) (2023-04-16T03:23:55Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
本稿は,近年の地域におけるフェアネスの概念と概念について概観する。
この分野での研究が現在どのように行われているのかを概観する。
全体として、最近の研究成果の分析は、ある研究のギャップを示している。
論文 参考訳(メタデータ) (2022-05-23T08:34:25Z) - The Threats of Artificial Intelligence Scale (TAI). Development,
Measurement and Test Over Three Application Domains [0.0]
いくつかの世論調査は、自律ロボットと人工知能(FARAI)の公衆の恐怖を頻繁に問う
我々は、AIシステムの4つの機能クラスを考慮し、AIアプリケーションの様々な領域に適用可能な、AIの脅威知覚を測定するためのきめ細かいスケールを提案する。
データは提案されたAIのThreats of AI(TAI)スケールの次元構造と、インジケータの内部一貫性と因子的妥当性をサポートする。
論文 参考訳(メタデータ) (2020-06-12T14:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。