論文の概要: Assessing the Potential of AI for Spatially Sensitive Nature-Related Financial Risks
- arxiv url: http://arxiv.org/abs/2404.17369v1
- Date: Fri, 26 Apr 2024 12:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:15:01.477789
- Title: Assessing the Potential of AI for Spatially Sensitive Nature-Related Financial Risks
- Title(参考訳): 空間感性自然関連金融リスクに対するAIの可能性の評価
- Authors: Steven Reece, Emma O donnell, Felicia Liu, Joanna Wolstenholme, Frida Arriaga, Giacomo Ascenzi, Richard Pywell,
- Abstract要約: 本報告では,ブラジル産牛肉供給利用事例と水利用利用事例という,2つの異なるユースケースのモデルに対するAIソリューションの可能性について述べる。
ブラジルの牛の農業用ユースケースは、自然に関する考慮事項を主要な金融決定に組み込む、グリーン化ファイナンスの一例である。
英国における水利事業のユースケースにおける自然ベースのソリューションの展開は、自然に肯定的な結果に投資するグリーン融資の例である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is growing recognition among financial institutions, financial regulators and policy makers of the importance of addressing nature-related risks and opportunities. Evaluating and assessing nature-related risks for financial institutions is challenging due to the large volume of heterogeneous data available on nature and the complexity of investment value chains and the various components' relationship to nature. The dual problem of scaling data analytics and analysing complex systems can be addressed using Artificial Intelligence (AI). We address issues such as plugging existing data gaps with discovered data, data estimation under uncertainty, time series analysis and (near) real-time updates. This report presents potential AI solutions for models of two distinct use cases, the Brazil Beef Supply Use Case and the Water Utility Use Case. Our two use cases cover a broad perspective within sustainable finance. The Brazilian cattle farming use case is an example of greening finance - integrating nature-related considerations into mainstream financial decision-making to transition investments away from sectors with poor historical track records and unsustainable operations. The deployment of nature-based solutions in the UK water utility use case is an example of financing green - driving investment to nature-positive outcomes. The two use cases also cover different sectors, geographies, financial assets and AI modelling techniques, providing an overview on how AI could be applied to different challenges relating to nature's integration into finance. This report is primarily aimed at financial institutions but is also of interest to ESG data providers, TNFD, systems modellers, and, of course, AI practitioners.
- Abstract(参考訳): 金融機関、金融規制当局、政策立案者の間で、自然関連リスクや機会に対処することの重要性に対する認識が高まっている。
金融機関の自然関連リスクの評価・評価は、自然上利用可能な多種多様なデータと、投資価値連鎖の複雑さ、および様々なコンポーネントの自然との関係から困難である。
データ分析のスケーリングと複雑なシステムの分析という2つの問題は、人工知能(AI)を使って対処することができる。
既存のデータギャップを発見データで埋める、不確実性のあるデータ推定、時系列分析、(近く)リアルタイム更新といった問題に対処する。
本報告では,ブラジル産牛肉供給利用事例と水利用利用事例という,2つの異なるユースケースのモデルに対するAIソリューションの可能性について述べる。
当社の2つのユースケースは、持続可能な金融の幅広い視点をカバーしています。
ブラジルの家畜農業のユースケースは、グリーン化ファイナンスの一例であり、自然に関する考慮事項を主要な金融決定に組み込んで、歴史的記録の乏しい部門や持続不可能な事業から投資を移行させるものである。
英国における水利事業のユースケースにおける自然ベースのソリューションの展開は、自然に肯定的な結果に投資するグリーン融資の例である。
この2つのユースケースは、さまざまなセクター、地理、金融資産、AIモデリング技術についてもカバーしており、自然と金融の統合に関するさまざまな課題に対してAIをどのように適用できるかを概説している。
このレポートは主に金融機関を対象としているが、ESGデータプロバイダ、TNFD、システムモデラー、そしてもちろんAI実践者にも関心がある。
関連論文リスト
- FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
本稿では、エクイティリサーチに特化したAIエージェントフレームワークであるFinRobotについて述べる。
FinRobotはマルチエージェント・チェーン・オブ・シント(CoT)システムを採用し、定量分析と定性的分析を統合し、人間のアナリストの包括的な推論をエミュレートする。
CapitalCubeやWright Reportsのような既存の自動研究ツールとは異なり、FinRobotは大手ブローカー会社や基礎研究ベンダーと同等の洞察を提供する。
論文 参考訳(メタデータ) (2024-11-13T17:38:07Z) - A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods [0.0]
機械学習とディープラーニングは、財務予測や予測タスクでますます普及している。
これらのモデルは透明性と解釈可能性に欠けることが多く、金融のような繊細なドメインでの使用を困難にしている。
本稿では、金融のためのAIベースのシステムに説明可能性を展開するための優れた実践について考察する。
論文 参考訳(メタデータ) (2023-11-13T17:56:45Z) - The AI Revolution: Opportunities and Challenges for the Finance Sector [12.486180180030964]
金融セクターにおけるAIの応用は、業界を変えつつある。
しかしながら、これらのメリットに加えて、AIはいくつかの課題も提示する。
これには透明性、解釈可能性、公正性、説明責任、信頼性に関する問題が含まれる。
金融セクターにおけるAIの使用は、データプライバシとセキュリティに関する重要な疑問をさらに引き起こす。
このニーズをグローバルに認識しているにもかかわらず、金融におけるAIの使用に関する明確なガイドラインや法律はいまだに存在しない。
論文 参考訳(メタデータ) (2023-08-31T08:30:09Z) - Company-as-Tribe: Company Financial Risk Assessment on Tribe-Style Graph
with Hierarchical Graph Neural Networks [62.94317686301643]
企業の金融リスクはユビキタスであり、上場企業に対する早期のリスク評価は、かなりの損失を避けることができる。
従来の手法は主に企業の財務諸表に重点を置いており、企業間の複雑な関係は欠如している。
比較学習を用いて部族の構造パターンを符号化する階層型グラフニューラルネット(TH-GNN)と、トライブ間の関係に基づいて情報を拡散する第2の階層型グラフニューラルネット(TH-GNN)を提案する。
論文 参考訳(メタデータ) (2023-01-31T09:17:13Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Financial data analysis application via multi-strategy text processing [0.2741266294612776]
本稿では、主に中国A株会社の株価取引データとニュースに焦点を当てる。
本稿では,自然言語処理(NLP)と知識グラフ(KG)技術を用いた金融テキスト処理アプリケーションシナリオの深層学習に向けた取り組みと計画について述べる。
論文 参考訳(メタデータ) (2022-04-25T01:56:36Z) - Heterogeneous Information Network based Default Analysis on Banking
Micro and Small Enterprise Users [18.32345474014549]
バンキングデータのグラフを考察し,その目的のために新しいHIDAMモデルを提案する。
MSEの特徴表現を強化するため,メタパスを通してインタラクティブな情報を抽出し,経路情報を完全に活用する。
実験結果から,HIDAMが現実の銀行データにおいて最先端の競争相手を上回ることが確認された。
論文 参考訳(メタデータ) (2022-04-24T11:26:12Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。