論文の概要: MemoCoder: Automated Function Synthesis using LLM-Supported Agents
- arxiv url: http://arxiv.org/abs/2507.18812v1
- Date: Thu, 24 Jul 2025 21:23:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.761926
- Title: MemoCoder: Automated Function Synthesis using LLM-Supported Agents
- Title(参考訳): メモコーダ:LDM担持剤を用いた自動機能合成
- Authors: Yiping Jia, Zhen Ming Jiang, Shayan Noei, Ying Zou,
- Abstract要約: 我々は,過去の修正から協調的な問題解決と永続的な学習を可能にするフレームワークであるMemoCoderを提案する。
中央メンタエージェントは、繰り返し発生するエラーパターンを特定し、ハイレベルな修正戦略を精査することにより、修復プロセスを監督する。
実験の結果,MemoCoderはゼロショットプロンプトと自己修復戦略の両方を一貫して上回っていることがわかった。
- 参考スコア(独自算出の注目度): 1.498158806172909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread adoption of Large Language Models (LLMs) such as GitHub Copilot and ChatGPT, developers increasingly rely on AI-assisted tools to support code generation. While LLMs can generate syntactically correct solutions for well-structured programming tasks, they often struggle with challenges that require iterative debugging, error handling, or adaptation to diverse problem structures. Existing approaches such as fine-tuning or self-repair strategies either require costly retraining or lack mechanisms to accumulate and reuse knowledge from previous attempts. To address these limitations, we propose MemoCoder, a multi-agent framework that enables collaborative problem solving and persistent learning from past fixes. At the core of MemoCoder is a Fixing Knowledge Set, which stores successful repairs and supports retrieval for future tasks. A central Mentor Agent supervises the repair process by identifying recurring error patterns and refining high-level fixing strategies, providing a novel supervisory role that guides the self-repair loop. We evaluate MemoCoder across three public benchmarks -- MBPP, HumanEval, and LiveCodeBench -- spanning a range of problem complexities. Experimental results show that MemoCoder consistently outperforms both zero-shot prompting and a Self-Repair strategy, with improvements ranging from 3.1% to 12.1% in Pass@10 and from 1.4% to 14.5% in Pass@50, demonstrating its effectiveness in iterative refinement and knowledge-guided code generation.
- Abstract(参考訳): GitHub CopilotやChatGPTといった大規模言語モデル(LLM)が広く採用されているため、開発者はコード生成をサポートするAI支援ツールにますます依存している。
LLMは、よく構造化されたプログラミングタスクに対して構文的に正しいソリューションを生成することができるが、反復的なデバッグ、エラーハンドリング、あるいは様々な問題構造への適応を必要とする課題に悩まされることが多い。
微調整や自己修復戦略のような既存のアプローチでは、以前の試みから知識を蓄積して再利用するために、コストのかかる再訓練またはメカニズムの欠如が必要になる。
これらの制約に対処するために,過去の修正から協調的な問題解決と永続的な学習を可能にするマルチエージェントフレームワークであるMemoCoderを提案する。
MemoCoderの中核にあるFixing Knowledge Setは、修復を成功させ、将来のタスクの検索をサポートする。
中央メンターエージェントは、繰り返し発生するエラーパターンを特定し、ハイレベルな修正戦略を精査することにより、修復プロセスを監督し、自己修復ループを導く新しい監督の役割を提供する。
私たちは、MBPP、HumanEval、LiveCodeBenchという3つの公開ベンチマークでMemoCoderを評価しました。
実験結果によると、MemoCoderはゼロショットプロンプトと自己修復戦略の両方を一貫して上回り、Pass@10では3.1%から12.1%、Pass@50では1.4%から14.5%に改善されている。
関連論文リスト
- Do AI models help produce verified bug fixes? [62.985237003585674]
大規模言語モデルは、ソフトウェアバグの修正に使用される。
本稿では,プログラマが大規模言語モデルを用いて,自身のスキルを補完する方法について検討する。
その結果は、プログラムバグに対する保証された修正を提供するAIとLLMの適切な役割への第一歩となる。
論文 参考訳(メタデータ) (2025-07-21T17:30:16Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - SolBench: A Dataset and Benchmark for Evaluating Functional Correctness in Solidity Code Completion and Repair [51.0686873716938]
コード補完モデルによって生成されたSolidityスマートコントラクトの機能的正しさを評価するベンチマークであるSolBenchを紹介する。
本稿では,スマートコントラクトの機能的正当性を検証するための検索拡張コード修復フレームワークを提案する。
その結果、コード修復と検索技術は、計算コストを削減しつつ、スマートコントラクト完了の正しさを効果的に向上することを示した。
論文 参考訳(メタデータ) (2025-03-03T01:55:20Z) - ToolCoder: A Systematic Code-Empowered Tool Learning Framework for Large Language Models [81.12673534903979]
ツール学習は、大規模な言語モデル(LLM)にとって、外部ツールとのインタラクションを通じて、複雑な現実世界のタスクを解決する重要な機能として登場した。
本稿では,ツール学習をコード生成タスクとして再編成する新しいフレームワークであるToolCoderを提案する。
論文 参考訳(メタデータ) (2025-02-17T03:42:28Z) - LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoderは、イシューコード再現のための継続的学習フレームワークである。
その結果,既存のSOTA法よりも20%改善した。
論文 参考訳(メタデータ) (2024-11-21T08:49:23Z) - A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
最近27の論文がレビューされ、2つのグループに分けられた。
最初のグループは、意味的エラーの特定を含む、バグの検出と修復のための新しいメソッドで構成されている。
2つ目のグループはコード生成に精通しており、プログラミングとタスク固有のモデルのために微調整された汎用LLMの概要を提供している。
また、識別子認識トレーニング、命令レベルでの微調整、セマンティックコード構造の導入など、コード生成を改善する方法も提示されている。
論文 参考訳(メタデータ) (2024-11-12T06:47:54Z) - FastFixer: An Efficient and Effective Approach for Repairing Programming Assignments [21.848112758958543]
本稿では,FastFixerを提案する。
まず,必要なパッチと関連するコンテキストを生成する方法を学ぶことへのLLMの関心を高めることを目的とした,修復指向のファインチューニング戦略を提案する。
修復効率を考慮すると、FastFixerは自動回帰復号アルゴリズムと比較して16.67倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-10-11T10:17:02Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language
Models [3.1690235522182104]
大規模言語モデル(LLM)は、様々なプログラミングタスクの解決にますます使われている。
長距離コード関係を学習するモデルを必要とするため,タスクは困難であることを示す。
本稿では,LLMのクエリと微調整のための新しいアプローチにより,これらの課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:35:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。