論文の概要: Arg-LLaDA: Argument Summarization via Large Language Diffusion Models and Sufficiency-Aware Refinement
- arxiv url: http://arxiv.org/abs/2507.19081v1
- Date: Fri, 25 Jul 2025 09:07:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.89384
- Title: Arg-LLaDA: Argument Summarization via Large Language Diffusion Models and Sufficiency-Aware Refinement
- Title(参考訳): Arg-LLaDA: 大規模言語拡散モデルによる論証の要約と十分対応型リファインメント
- Authors: Hao Li, Yizheng Sun, Viktor Schlegel, Kailai Yang, Riza Batista-Navarro, Goran Nenadic,
- Abstract要約: 本稿では,要約を反復的に改善する新しい大規模言語拡散フレームワークArg-LLaDAを紹介する。
本手法では,フレキシブルマスキングコントローラと十分チェックモジュールを組み合わせることで,サポート対象,冗長,あるいは不完全なスパンを特定し,修正する。
2つのベンチマークデータセットの実証結果は、Arg-LLaDAが10の自動評価指標のうち7の最先端のベースラインを超えたことを示している。
- 参考スコア(独自算出の注目度): 14.24815847815289
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Argument summarization aims to generate concise, structured representations of complex, multi-perspective debates. While recent work has advanced the identification and clustering of argumentative components, the generation stage remains underexplored. Existing approaches typically rely on single-pass generation, offering limited support for factual correction or structural refinement. To address this gap, we introduce Arg-LLaDA, a novel large language diffusion framework that iteratively improves summaries via sufficiency-guided remasking and regeneration. Our method combines a flexible masking controller with a sufficiency-checking module to identify and revise unsupported, redundant, or incomplete spans, yielding more faithful, concise, and coherent outputs. Empirical results on two benchmark datasets demonstrate that Arg-LLaDA surpasses state-of-the-art baselines in 7 out of 10 automatic evaluation metrics. In addition, human evaluations reveal substantial improvements across core dimensions, coverage, faithfulness, and conciseness, validating the effectiveness of our iterative, sufficiency-aware generation strategy.
- Abstract(参考訳): argument summarizationは、複雑で多面的な議論の簡潔で構造化された表現を生成することを目的としている。
近年の研究では、議論的コンポーネントの識別とクラスタリングが進んでいるが、生成段階は未検討のままである。
既存のアプローチは一般的に単一パス生成に依存しており、事実修正や構造改善の限定的なサポートを提供する。
このギャップに対処するため、我々はSufficiency-guided Remasking and Regenerationを通じて要約を反復的に改善する新しい大規模言語拡散フレームワークArg-LLaDAを紹介した。
本手法では, フレキシブルマスキングコントローラとサフィシビリティチェックモジュールを組み合わせることで, 不要, 冗長, 不完全なスパンを識別・修正し, より忠実で簡潔, 一貫性のある出力を得る。
2つのベンチマークデータセットの実証結果は、Arg-LLaDAが10の自動評価指標のうち7の最先端のベースラインを超えたことを示している。
さらに、人間の評価は、コアディメンジョン、カバレッジ、忠実さ、簡潔さにまたがって大幅に改善され、反復的、十分対応可能な生成戦略の有効性が検証された。
関連論文リスト
- Iterative Augmentation with Summarization Refinement (IASR) Evaluation for Unstructured Survey data Modeling and Analysis [0.43988112145759295]
本研究は,大規模言語モデル(LLM)に基づくテキスト拡張のための原則的評価フレームワークを導入する。
実証評価の結果, GPT-3.5 Turbo はセマンティック忠実度, 多様性, 生成効率の最良のバランスを達成できた。
論文 参考訳(メタデータ) (2025-07-16T10:49:30Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
大規模推論モデル(LRM)の最近の進歩は、チェーン・オブ・ソート(CoT)による生成長のスケールアップにより、複雑な推論タスクにおける顕著な性能向上を実現している。
本稿では,推論過程のトークン生成中にテキストヒントを注入することにより,推論モデルに簡潔な発話を促すフレームワークであるConciseHintを提案する。
DeepSeek-R1 や Qwen-3 シリーズを含む最先端の LRM 実験により,本手法は性能を良好に保ちながら簡潔な推論過程を効果的に生成できることが実証された。
論文 参考訳(メタデータ) (2025-06-23T16:20:44Z) - $φ^{\infty}$: Clause Purification, Embedding Realignment, and the Total Suppression of the Em Dash in Autoregressive Language Models [0.0]
自動回帰変換言語モデルにおいて,エムダッシュトークンがセマンティックドリフトを引き起こす重大な脆弱性を同定する。
本稿では,フィインフィニティ演算子とターゲット埋め込み行列を併用した記号節の浄化法を提案する。
論文 参考訳(メタデータ) (2025-06-22T18:27:39Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAGは知識ベースで大規模言語モデル(LLM)を実現するためのパラダイムとして広く採用されている。
標準的なRAGパイプラインは、モデル推論が取得した証拠と整合性を維持するのに失敗することが多く、事実上の矛盾や否定的な結論につながる。
本研究では,RAGをRetrieval-Augmented Reasoningと解釈し,中心的だが未探索な問題であるtextitReasoning Misalignmentを同定する。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z) - Constrained Auto-Regressive Decoding Constrains Generative Retrieval [71.71161220261655]
ジェネレーティブ検索は、従来の検索インデックスデータ構造を1つの大規模ニューラルネットワークに置き換えようとしている。
本稿では,制約とビームサーチという2つの本質的な視点から,制約付き自己回帰生成の固有の制約について検討する。
論文 参考訳(メタデータ) (2025-04-14T06:54:49Z) - Answering Multimodal Exclusion Queries with Lightweight Sparse Disentangled Representations [20.355669581029396]
クロスモーダル検索を可能にするマルチモーダル表現が広く使われている。
これらはしばしば解釈可能性に欠けており、得られた結果を説明するのが困難である。
本稿では, より小さな次元の固定サイズ埋め込みを生成する手法を提案する。
論文 参考訳(メタデータ) (2025-04-04T05:23:45Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
ラテントレキシカル射影 (LLP) は、構造化された空間からラテント空間への変換を通じて、レキシカル表現を洗練するために導入された。
LLPは既存の言語モデルアーキテクチャに最適化されたプロジェクション機構を統合する。
評価は、パープレキシティの低下とBLEUスコアの上昇を示し、予測精度と流布率の改善を示唆している。
論文 参考訳(メタデータ) (2025-02-03T23:18:53Z) - Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis [0.0]
大規模モデルにおける潜在知識の組織化は、重なり合う表現に対処し、文脈的精度を最適化する際、ユニークな課題を生じさせる。
高度なクラスタリング技術と動的しきい値設定により,これらの冗長性を再構築するフレームワークが提案された。
評価の結果、メモリ効率が向上し、推論時間が短縮され、解釈可能性を高める潜在知識クラスタのアライメントが向上した。
論文 参考訳(メタデータ) (2025-01-23T11:34:04Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Unsupervised Syntactically Controlled Paraphrase Generation with
Abstract Meaning Representations [59.10748929158525]
抽象表現(AMR)は、教師なし構文制御されたパラフレーズ生成の性能を大幅に向上させることができる。
提案モデルであるAMRPGは,AMRグラフを符号化し,入力文を2つの非絡み合った意味的および構文的埋め込みに解析する。
実験により、AMRPGは既存の教師なしアプローチと比較して、定量的かつ質的に、より正確な構文制御されたパラフレーズを生成することが示された。
論文 参考訳(メタデータ) (2022-11-02T04:58:38Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。