Arg-LLaDA: Argument Summarization via Large Language Diffusion Models and Sufficiency-Aware Refinement
- URL: http://arxiv.org/abs/2507.19081v1
- Date: Fri, 25 Jul 2025 09:07:52 GMT
- Title: Arg-LLaDA: Argument Summarization via Large Language Diffusion Models and Sufficiency-Aware Refinement
- Authors: Hao Li, Yizheng Sun, Viktor Schlegel, Kailai Yang, Riza Batista-Navarro, Goran Nenadic,
- Abstract summary: We introduce Arg-LLaDA, a novel large language diffusion framework that iteratively improves summaries.<n>Our method combines a flexible masking controller with a sufficiency-checking module to identify and revise unsupported, redundant, or incomplete spans.<n> Empirical results on two benchmark datasets demonstrate that Arg-LLaDA surpasses state-of-the-art baselines in 7 out of 10 automatic evaluation metrics.
- Score: 14.24815847815289
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Argument summarization aims to generate concise, structured representations of complex, multi-perspective debates. While recent work has advanced the identification and clustering of argumentative components, the generation stage remains underexplored. Existing approaches typically rely on single-pass generation, offering limited support for factual correction or structural refinement. To address this gap, we introduce Arg-LLaDA, a novel large language diffusion framework that iteratively improves summaries via sufficiency-guided remasking and regeneration. Our method combines a flexible masking controller with a sufficiency-checking module to identify and revise unsupported, redundant, or incomplete spans, yielding more faithful, concise, and coherent outputs. Empirical results on two benchmark datasets demonstrate that Arg-LLaDA surpasses state-of-the-art baselines in 7 out of 10 automatic evaluation metrics. In addition, human evaluations reveal substantial improvements across core dimensions, coverage, faithfulness, and conciseness, validating the effectiveness of our iterative, sufficiency-aware generation strategy.
Related papers
- Iterative Augmentation with Summarization Refinement (IASR) Evaluation for Unstructured Survey data Modeling and Analysis [0.43988112145759295]
This work introduces a principled evaluation framework for large language model (LLM) based text augmentation.<n> Empirical evaluations show that GPT-3.5 Turbo achieved the best balance of semantic fidelity, diversity, and generation efficiency.
arXiv Detail & Related papers (2025-07-16T10:49:30Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - $φ^{\infty}$: Clause Purification, Embedding Realignment, and the Total Suppression of the Em Dash in Autoregressive Language Models [0.0]
We identify a critical vulnerability in autoregressive transformer language models where the em dash token induces semantic drift.<n>We propose a novel solution combining symbolic clause purification via the phi-infinity operator with targeted embedding matrix.
arXiv Detail & Related papers (2025-06-22T18:27:39Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - Constrained Auto-Regressive Decoding Constrains Generative Retrieval [71.71161220261655]
Generative retrieval seeks to replace traditional search index data structures with a single large-scale neural network.<n>In this paper, we examine the inherent limitations of constrained auto-regressive generation from two essential perspectives: constraints and beam search.
arXiv Detail & Related papers (2025-04-14T06:54:49Z) - Answering Multimodal Exclusion Queries with Lightweight Sparse Disentangled Representations [20.355669581029396]
Multimodal representations that enable cross-modal retrieval are widely used.<n>These often lack interpretability making it difficult to explain the retrieved results.<n>We propose an approach that generates smaller dimensionality fixed-size embeddings that are disentangled.
arXiv Detail & Related papers (2025-04-04T05:23:45Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
Latent Lexical Projection (LLP) is introduced to refine lexical representations through a structured transformation into a latent space.<n>LLP integrates an optimized projection mechanism within an existing language model architecture.<n> Evaluations indicate a reduction in perplexity and an increase in BLEU scores, suggesting improvements in predictive accuracy and fluency.
arXiv Detail & Related papers (2025-02-03T23:18:53Z) - Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis [0.0]
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy.<n>A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding.<n> Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability.
arXiv Detail & Related papers (2025-01-23T11:34:04Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
This work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models.
The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks.
arXiv Detail & Related papers (2024-06-04T12:43:23Z) - Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
We propose a method for unsupervised abstractive opinion summarization that combines the attributability and scalability of extractive approaches with the coherence and fluency of Large Language Models (LLMs)
Our method, HIRO, learns an index structure that maps sentences to a path through a semantically organized discrete hierarchy.
At inference time, we populate the index and use it to identify and retrieve clusters of sentences containing popular opinions from input reviews.
arXiv Detail & Related papers (2024-03-01T10:38:07Z) - Unsupervised Syntactically Controlled Paraphrase Generation with
Abstract Meaning Representations [59.10748929158525]
Abstract Representations (AMR) can greatly improve the performance of unsupervised syntactically controlled paraphrase generation.
Our proposed model, AMR-enhanced Paraphrase Generator (AMRPG), encodes the AMR graph and the constituency parses the input sentence into two disentangled semantic and syntactic embeddings.
Experiments show that AMRPG generates more accurate syntactically controlled paraphrases, both quantitatively and qualitatively, compared to the existing unsupervised approaches.
arXiv Detail & Related papers (2022-11-02T04:58:38Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.