GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
- URL: http://arxiv.org/abs/2507.19095v1
- Date: Fri, 25 Jul 2025 09:25:55 GMT
- Title: GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
- Authors: Binxiong Li, Xu Xiang, Xue Li, Binyu Zhao, Yujie Liu, Huijie Tang, Benhan Yang, Zhixuan Chen,
- Abstract summary: We propose a novel deep graph clustering model, GCL-GCN, to address the limitations of existing models in capturing local dependencies and complex structures.<n>GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships.<n>In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix.
- Score: 7.280565255278454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Attributed graph clustering holds significant importance in modern data analysis. However, due to the complexity of graph data and the heterogeneity of node attributes, leveraging graph information for clustering remains challenging. To address this, we propose a novel deep graph clustering model, GCL-GCN, specifically designed to address the limitations of existing models in capturing local dependencies and complex structures when dealing with sparse and heterogeneous graph data. GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships, effectively capturing both global and local information between nodes, thereby enhancing the quality of node representations. Additionally, we propose a novel contrastive learning module that significantly enhances the discriminative power of feature representations. In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix, ensuring more identifiable initial representations for subsequent graph convolution and clustering tasks. Extensive experimental results on six datasets demonstrate that GCL-GCN outperforms 14 advanced methods in terms of clustering quality and robustness. Specifically, on the Cora dataset, it improves ACC, NMI, and ARI by 4.94%, 13.01%, and 10.97%, respectively, compared to the primary comparison method MBN.
Related papers
- Unsupervised Graph Clustering with Deep Structural Entropy [25.38926876388394]
DeSE is a novel unsupervised graph clustering framework incorporating Deep Structural Entropy.<n>It enhances the original graph with quantified structural information and deep neural networks to form clusters.<n>Our clustering assignment method learns node embeddings and a soft assignment matrix to cluster on the enhanced graph.
arXiv Detail & Related papers (2025-05-20T07:38:06Z) - Synergistic Deep Graph Clustering Network [14.569867830074292]
We propose a graph clustering framework named Synergistic Deep Graph Clustering Network (SynC)
In our approach, we design a Transform Input Graph Auto-Encoder (TIGAE) to obtain high-quality embeddings for guiding structure augmentation.
Notably, representation learning and structure augmentation share weights, significantly reducing the number of model parameters.
arXiv Detail & Related papers (2024-06-22T09:40:34Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.