論文の概要: Graph Structure Learning with Privacy Guarantees for Open Graph Data
- arxiv url: http://arxiv.org/abs/2507.19116v1
- Date: Fri, 25 Jul 2025 09:51:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.907753
- Title: Graph Structure Learning with Privacy Guarantees for Open Graph Data
- Title(参考訳): オープングラフデータのためのプライバシ保証によるグラフ構造学習
- Authors: Muhao Guo, Jiaqi Wu, Yang Weng, Yizheng Liao, Shengzhe Chen,
- Abstract要約: 本稿では,Gaussian DP (GDP) を利用したオープングラフグラフに対する構造的ノイズ注入機構を用いた新しいプライバシ保護推定フレームワークを提案する。
推定精度を理論的に保証し、離散可変プライバシートレーニングに拡張する。
グラフ学習の実験結果は、堅牢なパフォーマンスを示し、プライバシー保護グラフ分析のための実行可能なソリューションを提供する。
- 参考スコア(独自算出の注目度): 6.011824091708078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring privacy in large-scale open datasets is increasingly challenging under regulations such as the General Data Protection Regulation (GDPR). While differential privacy (DP) provides strong theoretical guarantees, it primarily focuses on noise injection during model training, neglecting privacy preservation at the data publishing stage. Existing privacy-preserving data publishing (PPDP) approaches struggle to balance privacy and utility, particularly when data publishers and users are distinct entities. To address this gap, we focus on the graph recovery problem and propose a novel privacy-preserving estimation framework for open graph data, leveraging Gaussian DP (GDP) with a structured noise-injection mechanism. Unlike traditional methods that perturb gradients or model updates, our approach ensures unbiased graph structure recovery while enforcing DP at the data publishing stage. Moreover, we provide theoretical guarantees on estimation accuracy and extend our method to discrete-variable graphs, a setting often overlooked in DP research. Experimental results in graph learning demonstrate robust performance, offering a viable solution for privacy-conscious graph analysis.
- Abstract(参考訳): 大規模なオープンデータセットにおけるプライバシの確保は、GDPR(General Data Protection Regulation)などの規則の下でますます困難になっている。
差分プライバシー(DP)は強力な理論的保証を提供するが、主にモデルトレーニング中のノイズ注入に焦点を当て、データパブリッシング段階でのプライバシー保護を無視している。
既存のプライバシー保護データパブリッシング(PPDP)アプローチは、特にデータパブリッシャとユーザが異なるエンティティである場合、プライバシとユーティリティのバランスをとるのに苦労する。
このギャップに対処するため,我々は,Gaussian DP(GDP)を構造的ノイズ注入機構で活用した,オープングラフデータに対する新たなプライバシ保護推定フレームワークを提案する。
勾配やモデル更新を摂動させる従来の手法とは異なり、我々の手法はデータパブリッシングの段階でDPを強制しながら、不偏のグラフ構造を復元する。
さらに、推定精度に関する理論的保証を提供し、その手法を離散変数グラフに拡張する。
グラフ学習の実験結果は堅牢なパフォーマンスを示し、プライバシーに配慮したグラフ解析のための実行可能なソリューションを提供する。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
本研究では,ネットワーク構造から生じるプライバシーリスクに対する理解と保護を推し進める。
我々は,ネットワーク構造によるプライバシー漏洩の可能性を評価するための重要なツールとして機能する,新しいグラフプライベート属性推論攻撃を開発した。
攻撃モデルはユーザのプライバシに重大な脅威を与え,グラフデータ公開手法は最適なプライバシとユーティリティのトレードオフを実現する。
論文 参考訳(メタデータ) (2024-07-26T07:40:54Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Privacy-Preserving Graph Embedding based on Local Differential Privacy [26.164722283887333]
ノードデータのプライバシを保護するために,PrivGEという新たなプライバシ保護グラフ埋め込みフレームワークを導入する。
具体的には,ノードデータを難読化するための LDP 機構を提案し,パーソナライズされた PageRank を近接指標としてノード表現を学習する。
いくつかの実世界のグラフデータセットの実験は、PrivGEがプライバシとユーティリティの最適なバランスを達成していることを示している。
論文 参考訳(メタデータ) (2023-10-17T08:06:08Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach [17.000441871334683]
ユーザレベルでノードのプライバシを提供するための学習フレームワークを提案する。
我々は、分散化された微分プライバシーの概念、すなわちローカル微分プライバシに焦点を当てる。
摂動データから特徴やラベルを近似する再構成手法を開発した。
論文 参考訳(メタデータ) (2023-09-15T17:35:51Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Graph Learning Across Data Silos [10.448384704100684]
本稿では,スムーズなグラフ信号からグラフトポロジを推定する問題を考える。
データは分散クライアントにあり、プライバシー上の懸念などの要因により、ローカルクライアントを去ることは禁じられている。
本稿では,各ローカルクライアントに対してパーソナライズされたグラフと,全クライアントに対して単一のコンセンサスグラフを共同で学習する,自動重み付き多重グラフ学習モデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T02:14:57Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Secure Deep Graph Generation with Link Differential Privacy [32.671503863933616]
我々は、差分プライバシー(DP)フレームワークを利用して、ディープグラフ生成モデルに厳密なプライバシー制約を定式化し、強制する。
特に、リンク再構成に基づくグラフ生成モデルの勾配に適切なノイズを注入することにより、エッジDPを強制する。
提案した DPGGAN モデルでは,グローバル構造を効果的に保存し,個々のリンクのプライバシを厳格に保護したグラフを生成することができる。
論文 参考訳(メタデータ) (2020-05-01T15:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。