PRE-MAP: Personalized Reinforced Eye-tracking Multimodal LLM for High-Resolution Multi-Attribute Point Prediction
- URL: http://arxiv.org/abs/2507.19213v1
- Date: Fri, 25 Jul 2025 12:32:29 GMT
- Title: PRE-MAP: Personalized Reinforced Eye-tracking Multimodal LLM for High-Resolution Multi-Attribute Point Prediction
- Authors: Hanbing Wu, Ping Jiang, Anyang Su, Chenxu Zhao, Tianyu Fu, Minghui Wu, Beiping Tan, Huiying Li,
- Abstract summary: We present Subjective Personalized Attention for Advertisement Videos, a large-scale multimodal dataset capturing gaze behaviors from over 4,500 participants varying in age and gender with 486 videos.<n>We propose PRE-MAP, a novel eye-tracking saliency model that characterizes Personalized visual disparities through Reinforcement learning-optimized Eye-tracking, built upon MLLMs and guided by Multi-Attribute user profiles to predict Points.
- Score: 14.053830475673031
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visual selective attention, driven by individual preferences, regulates human prioritization of visual stimuli by bridging subjective cognitive mechanisms with objective visual elements, thereby steering the semantic interpretation and hierarchical processing of dynamic visual scenes. However, existing models and datasets predominantly neglect the influence of subjective cognitive diversity on fixation behavior. Conventional saliency prediction models, typically employing segmentation approaches, rely on low-resolution imagery to generate saliency heatmaps, subsequently upscaled to native resolutions, which limiting their capacity to capture personalized attention patterns. Furthermore, MLLMs are constrained by factors such as hallucinations, making it very costly to strictly adhere to the expected format in tasks involving multiple point predictions, and achieving precise point positioning is challenging. To address these limitations, we present Subjective Personalized Attention for Advertisement Videos, namely SPA-ADV, a large-scale multimodal dataset capturing gaze behaviors from over 4,500 participants varying in age and gender with 486 videos. Furthermore, we propose PRE-MAP, a novel eye-tracking saliency model that characterizes Personalized visual disparities through Reinforcement learning-optimized Eye-tracking, built upon MLLMs and guided by Multi-Attribute user profiles to predict Points. To ensure MLLMs produce prediction points that are both format-correct and spatially accurate, we introduce Consistency Group Relative Policy Optimization (C-GRPO), inspired by the variability in eye movement points and Multi-Attribute profiles. Extensive experiments on SPA-ADV and other benchmarks demonstrate the effectiveness of our approach. The code and dataset are available at \href{https://github.com/mininglamp-MLLM/PRE-MAP}{this URL}.
Related papers
- Multi-Step Visual Reasoning with Visual Tokens Scaling and Verification [22.871255950998016]
We introduce a novel framework for inference-time visual tokens scaling that enables MLLMs to perform verifier-guided reasoning over visual content.<n>Our method significantly outperforms existing approaches across diverse visual reasoning benchmarks.<n>These results demonstrate the promise of dynamic inference mechanisms for enabling fine-grained, context-aware visual reasoning in next-generation MLLMs.
arXiv Detail & Related papers (2025-06-08T17:38:49Z) - Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization [18.855378039713678]
Large Vision Language Models (VLMs) are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies.<n>We introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset.<n>We also introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning.
arXiv Detail & Related papers (2025-02-18T18:59:57Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.<n>Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.<n>We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.<n> Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.<n>We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models [85.30735602813093]
Multi-Image Augmented Direct Preference Optimization (MIA-DPO) is a visual preference alignment approach that effectively handles multi-image inputs.
MIA-DPO mitigates the scarcity of diverse multi-image training data by extending single-image data with unrelated images arranged in grid collages or pic-in-pic formats.
arXiv Detail & Related papers (2024-10-23T07:56:48Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.<n>Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.<n>We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - HiLM-D: Enhancing MLLMs with Multi-Scale High-Resolution Details for Autonomous Driving [44.06475712570428]
HiLM-D is a resource-efficient framework that enhances visual information processing in MLLMs for ROLISP.<n>Our method is motivated by the fact that the primary variations in autonomous driving scenarios are the motion trajectories.<n>Experiments show HiLM-D's significant improvements over current MLLMs, with a 3.7% in BLEU-4 for captioning and 8.7% in mIoU for detection.
arXiv Detail & Related papers (2023-09-11T01:24:13Z) - MOPT: Multi-Object Panoptic Tracking [33.77171216778909]
We introduce a novel perception task denoted as multi-object panoptic tracking (MOPT)
MOPT allows for exploiting pixel-level semantic information of 'thing' and'stuff' classes, temporal coherence, and pixel-level associations over time.
We present extensive quantitative and qualitative evaluations of both vision-based and LiDAR-based MOPT that demonstrate encouraging results.
arXiv Detail & Related papers (2020-04-17T11:45:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.