HiLM-D: Enhancing MLLMs with Multi-Scale High-Resolution Details for Autonomous Driving
- URL: http://arxiv.org/abs/2309.05186v2
- Date: Mon, 24 Mar 2025 07:07:59 GMT
- Title: HiLM-D: Enhancing MLLMs with Multi-Scale High-Resolution Details for Autonomous Driving
- Authors: Xinpeng Ding, Jianhua Han, Hang Xu, Wei Zhang, Xiaomeng Li,
- Abstract summary: HiLM-D is a resource-efficient framework that enhances visual information processing in MLLMs for ROLISP.<n>Our method is motivated by the fact that the primary variations in autonomous driving scenarios are the motion trajectories.<n>Experiments show HiLM-D's significant improvements over current MLLMs, with a 3.7% in BLEU-4 for captioning and 8.7% in mIoU for detection.
- Score: 44.06475712570428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent efforts to use natural language for interpretable driving focus mainly on planning, neglecting perception tasks. In this paper, we address this gap by introducing ROLISP (Risk Object Localization and Intention and Suggestion Prediction), which towards interpretable risk object detection and suggestion for ego car motions. Accurate ROLISP implementation requires extensive reasoning to identify critical traffic objects and infer their intentions, prompting us to explore the capabilities of multimodal large language models (MLLMs). However, the limited perception performance of CLIP-ViT vision encoders in existing MLLMs struggles with capturing essential visual perception information, e.g., high-resolution, multi-scale and visual-related inductive biases, which are important for autonomous driving. Addressing these challenges, we introduce HiLM-D, a resource-efficient framework that enhances visual information processing in MLLMs for ROLISP. Our method is motivated by the fact that the primary variations in autonomous driving scenarios are the motion trajectories rather than the semantic or appearance information (e.g., the shapes and colors) of objects. Hence, the visual process of HiLM-D is a two-stream framework: (i) a temporal reasoning stream, receiving low-resolution dynamic video content, to capture temporal semantics, and (ii) a spatial perception stream, receiving a single high-resolution frame, to capture holistic visual perception-related information. The spatial perception stream can be made very lightweight by a well-designed P-Adapter, which is lightweight, training-efficient, and easily integrated into existing MLLMs. Experiments on the DRAMA-ROLISP dataset show HiLM-D's significant improvements over current MLLMs, with a 3.7% in BLEU-4 for captioning and 8.7% in mIoU for detection.
Related papers
- Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference [28.24397677839652]
Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models.
How MLLMs process and utilize visual information remains unclear.
We propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance.
arXiv Detail & Related papers (2025-03-17T12:31:23Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities.
We explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol.
We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - MLLM-SUL: Multimodal Large Language Model for Semantic Scene Understanding and Localization in Traffic Scenarios [10.353093987945012]
Multimodal large language models (MLLMs) have shown satisfactory effects in many autonomous driving tasks.
In this paper, MLLMs are utilized to solve joint semantic scene understanding and risk localization tasks.
Our method achieves 80.1% BLEU-1 score and 298.5% CIDEr score in the scene understanding task, and 59.6% accuracy in the localization task.
arXiv Detail & Related papers (2024-12-27T02:05:38Z) - DriveMLLM: A Benchmark for Spatial Understanding with Multimodal Large Language Models in Autonomous Driving [13.115027801151484]
We introduce DriveMLLM, a benchmark designed to evaluate the spatial understanding capabilities of multimodal large language models (MLLMs) in autonomous driving.
DriveMLLM includes 880 front-facing camera images and introduces both absolute and relative spatial reasoning tasks, accompanied by linguistically diverse natural language questions.
We evaluate several state-of-the-art MLLMs on DriveMLLM, and our results reveal the limitations of current models in understanding complex spatial relationships in driving contexts.
arXiv Detail & Related papers (2024-11-20T08:14:01Z) - Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
We introduce a novel learning paradigm termed MLLM4WTAL.
It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.
It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
arXiv Detail & Related papers (2024-11-13T09:37:24Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
We introduce an LLM-based approach for reconstructing visual-semantic information from fMRI signals elicited by video stimuli.
We employ fine-tuning techniques on an fMRI encoder equipped with adaptors to transform brain responses into latent representations aligned with the video stimuli.
In particular, we integrate self-supervised domain adaptation methods to enhance the alignment between visual-semantic information and brain responses.
arXiv Detail & Related papers (2024-09-26T15:57:08Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - Tell Me Where You Are: Multimodal LLMs Meet Place Recognition [11.421492098416538]
We introduce multimodal large language models (MLLMs) to visual place recognition (VPR)
Our key design is to use vision-based retrieval to propose several candidates and then leverage language-based reasoning to carefully inspect each candidate for a final decision.
Our results on three datasets demonstrate that integrating the general-purpose visual features from VFMs with the reasoning capabilities of MLLMs already provides an effective place recognition solution.
arXiv Detail & Related papers (2024-06-25T12:59:46Z) - From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks [33.476693301050275]
We conduct experiments with truncation strategies across various LVLMs for visual question answering and image captioning tasks.
By exploring the information flow from the perspective of visual representation contribution, we observe that it tends to converge in shallow layers but diversify in deeper layers.
arXiv Detail & Related papers (2024-06-04T13:52:54Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Holistic Autonomous Driving Understanding by Bird's-Eye-View Injected
Multi-Modal Large Models [76.99140362751787]
We present NuInstruct, a novel dataset with 91K multi-view video-QA pairs across 17 subtasks.
We also present BEV-InMLLM, an end-to-end method for efficiently deriving instruction-aware Bird's-Eye-View features.
arXiv Detail & Related papers (2024-01-02T01:54:22Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - Enhancing the Spatial Awareness Capability of Multi-Modal Large Language
Model [25.86351431223383]
The Multi-Modal Large Language Model (MLLM) is an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data.
This paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries.
arXiv Detail & Related papers (2023-10-31T10:57:35Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - LMEye: An Interactive Perception Network for Large Language Models [43.160353427015025]
LMEye is a human-like eye with a play-and-plug interactive perception network.
It enables dynamic interaction between Large Language Models and external vision information.
It significantly improves the zero-shot performance on various multimodal tasks.
arXiv Detail & Related papers (2023-05-05T17:27:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.