論文の概要: Gradient-based grand canonical optimization enabled by graph neural networks with fractional atomic existence
- arxiv url: http://arxiv.org/abs/2507.19438v1
- Date: Fri, 25 Jul 2025 17:13:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:49.045791
- Title: Gradient-based grand canonical optimization enabled by graph neural networks with fractional atomic existence
- Title(参考訳): 分数原子が存在するグラフニューラルネットワークによる勾配に基づくグランドカノニカル最適化
- Authors: Mads-Peter Verner Christiansen, Bjørk Hammer,
- Abstract要約: State-of-the-artモデルは一般的に、原子埋め込みを反復的に更新するためにメッセージパッシングを使用するグラフニューラルネットワークである。
我々は、分数原子の存在を考慮に入れた連続変数を含むことによって、メッセージパッシング形式を拡張した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning interatomic potentials have become an indispensable tool for materials science, enabling the study of larger systems and longer timescales. State-of-the-art models are generally graph neural networks that employ message passing to iteratively update atomic embeddings that are ultimately used for predicting properties. In this work we extend the message passing formalism with the inclusion of a continuous variable that accounts for fractional atomic existence. This allows us to calculate the gradient of the Gibbs free energy with respect to both the Cartesian coordinates of atoms and their existence. Using this we propose a gradient-based grand canonical optimization method and document its capabilities for a Cu(110) surface oxide.
- Abstract(参考訳): 機械学習の原子間ポテンシャルは材料科学にとって欠かせないツールとなり、より大きなシステムとより長い時間スケールの研究を可能にした。
State-of-the-artモデルは一般的に、プロパティの予測に最終的に使用される原子埋め込みを反復的に更新するためにメッセージパッシングを使用するグラフニューラルネットワークである。
この研究では、分数原子の存在を考慮に入れた連続変数を含むことによって、メッセージパッシング形式を拡張します。
これにより、原子のカルテシアン座標とその存在に関してギブス自由エネルギーの勾配を計算することができる。
これを用いて勾配に基づくグランドカノニカル最適化法を提案し,Cu(110)表面酸化物のキャラクタリゼーション能力を示す。
関連論文リスト
- Universal neural network potentials as descriptors: Towards scalable chemical property prediction using quantum and classical computers [0.0]
本稿では,化学特性予測のための汎用記述子として,普遍的ニューラルネットワークポテンシャルの中間情報を利用する汎用的アプローチを提案する。
本稿では,M3GNet や MACE などのグラフニューラルネットワークを用いた伝達学習が,NMR の化学シフトを予測するための最先端手法に匹敵する精度を実現することを示す。
論文 参考訳(メタデータ) (2024-02-28T15:57:22Z) - SAF: Smart Aggregation Framework for Revealing Atoms Importance Rank and
Improving Prediction Rates in Drug Discovery [0.0]
分子を表現するための成功したアプローチは、それらをグラフとして扱い、グラフニューラルネットワークを利用することである。
本稿ではボルツマン分布を用いて各原子を非線形に重み付けする新しい凝集法を提案する。
この重み付けアグリゲーションを用いることで、抗生物質活性を予測するためのゴールド標準メッセージパスニューラルネットワークの能力が向上することを示す。
論文 参考訳(メタデータ) (2023-09-12T22:04:24Z) - Transfer learning for atomistic simulations using GNNs and kernel mean
embeddings [24.560340485988128]
本稿では, グラフニューラルネットワーク(GNN)を用いて, カーネル平均埋め込みとともに, 化学環境を表現するトランスファー学習アルゴリズムを提案する。
我々は,複雑性を増大させる一連の現実的なデータセットに対して,我々のアプローチを検証し,優れた一般化と伝達可能性性能を示す。
論文 参考訳(メタデータ) (2023-06-02T14:58:16Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
グラフ構造化データのための新しいハイブリッド量子古典アルゴリズムを提案し、これをEgo-graph based Quantum Graph Neural Network (egoQGNN)と呼ぶ。
egoQGNNはテンソル積とユニティ行列表現を用いてGNN理論フレームワークを実装し、必要なモデルパラメータの数を大幅に削減する。
このアーキテクチャは、現実世界のデータからヒルベルト空間への新しいマッピングに基づいている。
論文 参考訳(メタデータ) (2022-01-13T16:35:45Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z) - Gaussian Moments as Physically Inspired Molecular Descriptors for
Accurate and Scalable Machine Learning Potentials [0.0]
本稿では,フィードフォワードニューラルネットワークに基づく高次元ポテンシャルエネルギー表面構築のための機械学習手法を提案する。
化学空間と構成空間の両方を表すために開発されたアプローチの精度は、いくつかの確立された機械学習モデルの1つに匹敵する。
論文 参考訳(メタデータ) (2021-09-15T16:46:46Z) - GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning [16.484048833163282]
GeoT(Geometry-aware Transformer)という,分子表現学習のためのトランスフォーマーベースの新しいフレームワークを提案する。
GeoTは、分子特性予測と同様に、信頼性の高い解釈性を提供するように設計された注意に基づくメカニズムを通じて、分子グラフ構造を学習する。
実験的なシミュレーションを含む包括的実験により、GeoTは分子構造に関する化学的な洞察を効果的に学習し、人工知能と分子科学のギャップを埋めることを明らかにした。
論文 参考訳(メタデータ) (2021-06-29T15:47:18Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。