Beyond 9-to-5: A Generative Model for Augmenting Mobility Data of Underrepresented Shift Workers
- URL: http://arxiv.org/abs/2507.19510v1
- Date: Thu, 17 Jul 2025 02:33:30 GMT
- Title: Beyond 9-to-5: A Generative Model for Augmenting Mobility Data of Underrepresented Shift Workers
- Authors: Haoxuan Ma, Xishun Liao, Yifan Liu, Chris Stanford, Jiaqi Ma,
- Abstract summary: Shift workers comprise 15-20% of the workforce in industrialized societies.<n>Our approach generates complete, behaviorally valid activity patterns for individuals working non-standard hours.<n>By transforming incomplete GPS traces into complete, representative activity patterns, our approach provides transportation planners with a powerful data augmentation tool.
- Score: 12.610498232333871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses a critical gap in urban mobility modeling by focusing on shift workers, a population segment comprising 15-20% of the workforce in industrialized societies yet systematically underrepresented in traditional transportation surveys and planning. This underrepresentation is revealed in this study by a comparative analysis of GPS and survey data, highlighting stark differences between the bimodal temporal patterns of shift workers and the conventional 9-to-5 schedules recorded in surveys. To address this bias, we introduce a novel transformer-based approach that leverages fragmented GPS trajectory data to generate complete, behaviorally valid activity patterns for individuals working non-standard hours. Our method employs periodaware temporal embeddings and a transition-focused loss function specifically designed to capture the unique activity rhythms of shift workers and mitigate the inherent biases in conventional transportation datasets. Evaluation shows that the generated data achieves remarkable distributional alignment with GPS data from Los Angeles County (Average JSD < 0.02 for all evaluation metrics). By transforming incomplete GPS traces into complete, representative activity patterns, our approach provides transportation planners with a powerful data augmentation tool to fill critical gaps in understanding the 24/7 mobility needs of urban populations, enabling precise and inclusive transportation planning.
Related papers
- The NetMob25 Dataset: A High-resolution Multi-layered View of Individual Mobility in Greater Paris Region [64.30214722988666]
This paper describes the survey design, collection protocol, processing methodology, and characteristics of the released dataset.<n>The dataset includes three components: (i) an Individuals database describing demographic, socioeconomic, and household characteristics; (ii) a Trips database with over 80,000 annotated displacements including timestamps, transport modes, and trip purposes; and (iii) a Raw GPS Traces database comprising about 500 million high-frequency points.
arXiv Detail & Related papers (2025-06-06T09:22:21Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Regions are Who Walk Them: a Large Pre-trained Spatiotemporal Model
Based on Human Mobility for Ubiquitous Urban Sensing [24.48869607589127]
We propose a largetemporal model based on trajectories (RAW) to tap into the rich information within human mobility data.
Our proposed method, relying solely on human mobility data without additional features, exhibits certain level of relevance in user profiling and region analysis.
arXiv Detail & Related papers (2023-11-17T11:55:11Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Driver Profiling and Bayesian Workload Estimation Using Naturalistic
Peripheral Detection Study Data [40.43737902900321]
We tackle the problem of workload estimation from driving performance data.
Key environmental factors that induce a high mental workload are identified via video analysis.
A supervised learning framework is introduced to profile drivers based on the average workload they experience.
A Bayesian filtering approach is then proposed for sequentially estimating, in (near) real-time, the driver's instantaneous workload.
arXiv Detail & Related papers (2023-03-26T13:15:44Z) - Embedding Synthetic Off-Policy Experience for Autonomous Driving via
Zero-Shot Curricula [48.58973705935691]
We show that an agent trained using only a 10% subset of the data performs just as well as an agent trained on the entire dataset.
We then demonstrate that this difficulty score can be used in a zero-shot transfer to generate curricula for an imitation-learning based planning agent.
arXiv Detail & Related papers (2022-12-02T18:57:21Z) - On Designing Day Ahead and Same Day Ridership Level Prediction Models
for City-Scale Transit Networks Using Noisy APC Data [0.0]
We propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership.
We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN.
arXiv Detail & Related papers (2022-10-10T19:50:59Z) - Shifts: A Dataset of Real Distributional Shift Across Multiple
Large-Scale Tasks [44.61070965407907]
Given the current state of the field, a standardized large-scale dataset of tasks across a range of modalities affected by distributional shifts is necessary.
We propose the emphShifts dataset for evaluation of uncertainty estimates and robustness to distributional shift.
arXiv Detail & Related papers (2021-07-15T16:59:34Z) - AttnMove: History Enhanced Trajectory Recovery via Attentional Network [15.685998183691655]
We propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations.
We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-01-03T15:45:35Z) - Leveraging the Self-Transition Probability of Ordinal Pattern Transition
Graph for Transportation Mode Classification [0.0]
We propose the use of a feature retained from the Ordinal Pattern Transition Graph, called the probability of self-transition for transportation mode classification.
The proposed feature presents better accuracy results than Permutation Entropy and Statistical Complexity, even when these two are combined.
arXiv Detail & Related papers (2020-07-16T23:25:09Z) - Station-to-User Transfer Learning: Towards Explainable User Clustering
Through Latent Trip Signatures Using Tidal-Regularized Non-Negative Matrix
Factorization [4.713006935605146]
This work focuses on mobility data and how it will help improve our understanding of urban mobility patterns.
We propose a Collective Learning Framework through Latent Representation, which augments user-level learning with collective patterns learned from station-level signals.
We provide a qualitative analysis of the station functions and user profiles for the Washington D.C. metro and show how our method supports intra-city mobility exploration.
arXiv Detail & Related papers (2020-04-27T14:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.