論文の概要: A Comparative Analysis of Traditional and Deep Learning Time Series Architectures for Influenza A Infectious Disease Forecasting
- arxiv url: http://arxiv.org/abs/2507.19515v1
- Date: Fri, 18 Jul 2025 03:20:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.8372
- Title: A Comparative Analysis of Traditional and Deep Learning Time Series Architectures for Influenza A Infectious Disease Forecasting
- Title(参考訳): 感染症予測のための伝統的・深層学習時系列構造の比較分析
- Authors: Edmund F. Agyemang, Hansapani Rodrigo, Vincent Agbenyeavu,
- Abstract要約: A型インフルエンザは年間290,000人から650,000人の呼吸器死亡の原因となっている。
本研究では,インフルエンザAの流行を予測するために,従来の学習モデルと深層学習モデルの比較分析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Influenza A is responsible for 290,000 to 650,000 respiratory deaths a year, though this estimate is an improvement from years past due to improvements in sanitation, healthcare practices, and vaccination programs. In this study, we perform a comparative analysis of traditional and deep learning models to predict Influenza A outbreaks. Using historical data from January 2009 to December 2023, we compared the performance of traditional ARIMA and Exponential Smoothing(ETS) models with six distinct deep learning architectures: Simple RNN, LSTM, GRU, BiLSTM, BiGRU, and Transformer. The results reveal a clear superiority of all the deep learning models, especially the state-of-the-art Transformer with respective average testing MSE and MAE of 0.0433 \pm 0.0020 and 0.1126 \pm 0.0016 for capturing the temporal complexities associated with Influenza A data, outperforming well known traditional baseline ARIMA and ETS models. These findings of this study provide evidence that state-of-the-art deep learning architectures can enhance predictive modeling for infectious diseases and indicate a more general trend toward using deep learning methods to enhance public health forecasting and intervention planning strategies. Future work should focus on how these models can be incorporated into real-time forecasting and preparedness systems at an epidemic level, and integrated into existing surveillance systems.
- Abstract(参考訳): インフルエンザAは年間290万から650,000人の呼吸器死を負っているが、この推計は、衛生、医療、予防接種プログラムの改善により、何年も前から改善されている。
本研究では,インフルエンザAの流行を予測するために,従来の学習モデルと深層学習モデルの比較分析を行った。
2009年1月から2023年12月までの履歴データを用いて,従来のARIMAモデルとExponential Smoothing(ETS)モデルの性能を,Simple RNN,LSTM,GRU,BiLSTM,BiGRU,Transformerの6つの異なるディープラーニングアーキテクチャと比較した。
以上の結果から, 深層学習モデル, 特に最先端のトランスフォーマーでは, 平均テストMSEとMAEが0.0433 \pm 0.0020と0.1126 \pm 0.0016で, インフルエンザAデータに関連する時間的複雑さを把握し, 従来のベースラインであるARIMAやETSモデルよりも優れていたことが明らかとなった。
これらの知見は,最先端の深層学習アーキテクチャが感染症の予測モデリングを促進できることを示すとともに,公衆衛生予測と介入計画戦略を強化するために,より一般的なディープラーニング手法の利用傾向を示すものである。
今後は、これらのモデルがどのようにリアルタイムの予測・準備システムに組み込まれ、既存の監視システムに統合されるかに焦点を当てるべきである。
関連論文リスト
- Physics-informed deep learning for infectious disease forecasting [3.3618265137908527]
物理インフォームドニューラルネットワーク(PINN)に基づく新しい感染症予測モデルを提案する。
カリフォルニア州の国家レベルのCOVID-19データを用いて、PINNモデルがケース、死亡、入院を正確に予測していることを実証する。
論文 参考訳(メタデータ) (2025-01-16T05:07:05Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
ワクチンサプライチェーン最適化は階層的な時系列予測の恩恵を受けることができる。
異なる階層レベルの予測は、上位レベルの予測が下位レベルの予測の総和と一致しないときに不整合となる。
我々は2010年から2021年にかけてのGSKの販売データを階層的時系列としてモデル化し,ワクチン販売予測問題に取り組む。
論文 参考訳(メタデータ) (2023-05-02T14:34:34Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
2019年12月の新型コロナウイルスの感染は、すでに世界中で数百万人を感染させ、拡大し続けています。
流行のカーブが平ら化し始めた直後、多くの国が再びケースの増加を目撃し始めている。
したがって、国家当局や保健当局に将来の時代の即時戦略を提供するには、時系列予測モデルの徹底的な分析が必要です。
論文 参考訳(メタデータ) (2021-05-05T14:56:27Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
疫学領域における新型コロナウイルスの流行を予測するための機械学習(ML)アプローチの比較分析を行った。
これらの結果から,短期的政策の意思決定を支援するMLアルゴリズムの利点が明らかになった。
論文 参考訳(メタデータ) (2021-02-11T11:57:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Examining Deep Learning Models with Multiple Data Sources for COVID-19
Forecasting [10.052302234274256]
COVID-19予測のためのディープラーニングモデルの設計と分析を行う。
新型コロナウイルス(COVID-19)や死亡例数などの複数のソースが、より良い予測のためにデータとテストデータを数えている。
時間的予測のためのクラスタリングに基づくトレーニングを提案する。
論文 参考訳(メタデータ) (2020-10-27T17:52:02Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19 [75.99038202534628]
我々は、インフルエンザとCOVID-19が共存する新しいシナリオに、歴史的疾患予測モデルを「操る」ことができる神経伝達学習アーキテクチャであるCALI-Netを提案する。
我々の実験は、現在のパンデミックに歴史的予測モデルを適用することに成功していることを示している。
論文 参考訳(メタデータ) (2020-09-23T22:35:43Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。